Chapter

Fundamental Techniques

Contents
5.1 The Greedy Method . . . . . . ... ... ....... 259
5.1.1 The Fractional Knapsack Problem . . . . . ... .. 259
5.1.2 Task Scheduling . . . . . . ... ... ... ... 261
5.2 Divide-and-Conquer . . . . . . ... ... .. ..... 263
5.2.1 Divide-and-Conquer Recurrence Equations . . . . . . 263
5.2.2 Integer Multiplication . . . . . .. .. ... ... .. 270
5.2.3 Matrix Multiplication . . . . . ... ... ... ... 272
5.3 Dynamic Programming . . . . ... ... ....... 274
5.3.1 Matrix Chain-Product . . . . . . . .. .. ... ... 274
5.3.2 The General Technique . . . . .. . ... ... ... 278
5.3.3 The 0-1 Knapsack Problem . . . . . . ... .. ... 278

5.4 EXercises . . . . . .« i i i i e e e e e e e e e 282




258

Chapter 5. Fundamental Techniques

A popular television network broadcasts two different shows about carpentry.
In one show, the host builds furniture using specialized power tools, and in the other
the host builds furniture using general-purpose hand tools. The specialized tools,
used in the first show, are good at the jobs they are intended for, but none of them
is very versatile. The tools in the second show are fundamental, however, because
they can be used effectively for a wide variety of different tasks.

These two television shows provide an interesting metaphor for data structure
and algorithm design. There are some algorithmic tools that are quite specialized.
They are good for the problems they are intended to solve, but they are not very
versatile. There are other algorithmic tools, however, thafilardamentalin that
they can be applied to a wide variety of different data structure and algorithm design
problems. Learning to use these fundamental techniques is a craft, and this chapter
is dedicated to developing the knowledge for using these techniques effectively.

The fundamental techniques covered in this chapter are the greedy method,
divide-and-conquer, and dynamic programming. These techniques are versatile,
and examples are given both in this chapter and in other chapters of this book.

The greedy method is used in algorithms for weighted graphs discussed in
Chapter 7, as well as a data compression problem presented in Section 9.3. The
main idea of this technique, as the name implies, is to make a series of greedy
choices in order to construct an optimal solution (or close to optimal solution) for a
given problem. In this chapter, we give the general structure for the greedy method
and show how it can be applied to knapsack and scheduling problems.

Divide-and-conquer is used in the merge-sort and quick-sort algorithms of Chap-
ter 4. The general idea behind this technique is to solve a given problem by dividing
it into a small number of similar subproblems, recursively solve each of the sub-
problems until they are small enough to solve by brute force, and, after the recursive
calls return, merge all the subproblems together to derive a solution to the original
problem. In this chapter, we show how to design and analyze general divide-and-
conquer algorithms and we give additional applications of this technique to the
problems of multiplying big integers and large matrices. We also give a number of
techniques for solving divide-and-conquer recurrence equations, including a gen-
eral master theorem that can be applied to a variety of equations.

The dynamic programming technique might at first seem a bit mysterious, but
it is quite powerful. The main idea is to solve a given problem by characterizing its
subproblems using a small set of integer indices. The goal of this characterization
is to allow an optimal solution to a subproblem to be defined by the combination of
(possibly overlapping) solutions to even smaller subproblems. If we can construct
such a characterization, which is the hardest step in using the dynamic program-
ming technique, then we can build a rather straightforward algorithm that builds up
larger subproblem solutions from smaller ones. This technique underlies the Floyd-
Warshall transitive closure algorithm of Chapter 6. In this chapter, we describe the
general framework of dynamic programming and give several applications, includ-
ing to the 0-1 knapsack problem.



5.1. The Greedy Method 259

5.1 The Greedy Method

The first algorithmic technique we consider in this chapter isgieedy method
We characterize this greedy method design pattern in terms of a gemeealy-
choiceproperty, and we give two applications of its use.

The greedy method is applied to optimization problems, that is, problems that
involve searching through a set obnfigurationsto find one that minimizes or
maximizes arobjective functiondefined on these configurations. The general for-
mula of the greedy method could not be simpler. In order to solve a given optimiza-
tion problem, we proceed by a sequence of choices. The sequence starts from some
well-understood starting configuration, and then iteratively makes the decision that
seems best from all of those that are currently possible.

This greedy approach does not always lead to an optimal solution. But there
are several problems that it does work optimally for, and such problems are said
to possess thgreedy-choiceproperty. This is the property that a global optimal
configuration can be reached by a series of locally optimal choices (that is, choices
that are the best from among the possibilities available at the time), starting from a
well-defined configuration.

5.1.1

The Fractional Knapsack Problem

Consider thdractional knapsackproblem, where we are given a $of n items,

such that each itefnhas a positive benefii and a positive weight;, and we wish

to find the maximum-benefit subset that does not exceed a given Weigliitwe

are restricted to entirely accepting or rejecting each item, then we would have the
0-1 version of this problem (for which we give a dynamic programming solution

in Section 5.3.3). Let us now allow ourselves to take arbitrary fractions of some
elements, however. The motivation for this fractional knapsack problem is that we
are going on a trip and we have a single knapsack that can carry items that together
have weight at mostV. In addition, we are allowed to break items into fractions
arbitrarily. That is, we can take an amounbf each item such that

0<x <wforeachicS and in <W.
ic

The total benefit of the items taken is determined by the objective function

igsbi (% /).

Consider, for example, a student who is going to an outdoor sporting event and
must fill a knapsack full of foodstuffs to take along. Each candidate foodstuff is
something that can be easily divided into fractions, such as soda pop, potato chips,
popcorn, and pizza.



260 Chapter 5. Fundamental Techniques

Algorithm FractionalKnapsack(SW):
Input: SetSof items, such that each iteme Shas a positive benefit and a
positive weightw;; positive maximum total weightv
Output: Amountx; of each iteni € Sthat maximizes the total benefit while not
exceeding the maximum total weight

for each item € Sdo

% —0
Vi < by /w; {value indexof itemi}

w0 {total weight

while w < W do
remove fromSan itemi with highest value index {greedy choicg
a <« min{w;, W —w} {more thanN — w causes a weight overflgw
X« a
W W-+a

Algorithm 5.1: A greedy algorithm for the fractional knapsack problem.

This is one place where greed is good, for we can solve the fractional knapsack
problem using the greedy approach shown in Algorithm 5.1.

The FractionalKnapsack algorithm can be implemented @(nlogn) time,
wheren is the number of items 5. Specifically, we use a heap-based priority
gueue (Section 2.4.3) to store the item$pivhere the key of each item is its value
index. With this data structure, each greedy choice, which removes the item with
greatest value index, tak€logn) time.

To see that the fractional knapsack problem satisfies the greedy-choice property,
suppose that there are two iteivend j such that

Xi<Wwi, Xj>0, and v <v;.
Let
y = min{w; —x;, X }.

We could then replace an amouynof item j with an equal amount of itefy thus
increasing the total benefit without changing the total weight. Therefore, we can
correctly compute optimal amounts for the items by greedily choosing items with
the largest value index. This leads to the following theorem.

Theorem 5.1: Given a collectiors of n items, such that each itenhas a benefit
b, and weightw;, we can construct a maximum-benefit subseg,odllowing for
fractional amounts, that has a total weigtin O(nlogn) time.

This theorem shows how efficiently we can solve the fractional version of the
knapsack problem. The all-or-nothing, or “0-1” version of the knapsack problem
does not satisfy the greedy choice property, however, and solving this version of
the problem is much harder, as we explore in Sections 5.3.3 and 13.3.4.



5.1. The Greedy Method 261

5.1.2 Task Scheduling

Let us consider another optimization problem. Suppose we are giveriTacet
tasks such that each taskhas astart time s, and a finish timef; (wheres < f;).
Taski must start at timg and it is guaranteed to be finished by tifjeEach task
has to be performed onraachineand each machine can execute only one task at
atime. Two tasks and j arenonconflictingif fi <s; or f; <s. Two tasks can be
scheduled to be executed on the same machine only if they are nonconflicting.

Thetask schedulingproblem we consider here is to schedule all the tasks in
T on the fewest machines possible in a nonconflicting way. Alternatively, we can
think of the tasks as meetings that we must schedule in as few conference rooms as
possible. (See Figure 5.2.)

Machine 3 [ | | ]

Machine 2 ( ] [ ]

Machine 1 [ [ ]

I I I I I I I I I
1 2 3 4 5 6 7 8 9

Figure 5.2:  An llustration of a solution to the task scheduling prob-
lem, for tasks whose collection of pairs of start times and finish times is
{(1,3),(1,4),(25), (3,7), (47),(6,9), (7.8)}.

In Algorithm 5.3, we describe a simple greedy algorithm for this problem.

Algorithm TaskSchedule(T):
Input: A setT of tasks, such that each task has a start §maed a finish timef;
Output: A nonconflicting schedule of the tasksTnusing a minimum number
of machines

m«—0 {optimal number of machings
while T # () do
remove fromT the task with smallest start tims;
if there is a maching with no task conflicting with taskthen
schedule taskon machinej
else
m«— m+1 {add a new machirje
schedule taskon machinem

Algorithm 5.3: A greedy algorithm for the task scheduling problem.



262

Chapter 5. Fundamental Techniques

Correctness of Greedy Task Scheduling

In the algorithmTaskSchedule, we begin with no machines and we consider the
tasks in a greedy fashion, ordered by their start times. For each, ihgke have a
machine that can handle taskhen we scheduleon that machine. Otherwise, we
allocate a new machine, schedulen it, and repeat this greedy selection process
until we have considered all the tasksTin

The fact that the abov@askSchedule algorithm works correctly is established
by the following theorem.

Theorem 5.2: Given a set oh tasks specified by their start and finish times, Al-
gorithmTaskSchedule produces a schedule of the tasks with the minimum number
of machines irD(nlogn) time.

Proof: We can show that the above simple greedy algorithmkSchedule, finds
an optimal schedule on the minimum number of machines by a simple contradiction
argument.

So, suppose the algorithm does not work. That is, suppose the algorithm finds
a nonconflicting schedule usingmachines but there is a nonconflicting schedule
that uses onlk— 1 machines. Lek be the last machine allocated by our algorithm,
and leti be the first task scheduled &n By the structure of the algorithm, when
we scheduled, each of the machines 1 throu@h- 1 contained tasks that conflict
with i. Since they conflict with and because we consider tasks ordered by their
start times, all the tasks currently conflicting with taskust have start times less
than or equal t@;, the start time of, and have finish times aftagy. In other words,
these tasks not only conflict with tagkthey all conflict with each other. But this
means we havk tasks in our sef that conflict with each other, which implies
it is impossible for us to schedule all the tasksTirusing onlyk — 1 machines.
Therefore k is the minimum number of machines needed to schedule all the tasks
inT.

We leave as a simple exercise (R-5.2) the job of showing how to implement the
Algorithm TaskSchedule in O(nlogn) time. [

We consider several other applications of the greedy method in this book, in-
cluding two problems in string compression (Section 9.3), where the greedy ap-
proach gives rise to a construction known as Huffman coding, and graph algorithms
(Section 7.3), where the greedy approach is used to solve shortest path and mini-
mum spanning tree problems.

The next technique we discuss is the divide-and-conquer technique, which is a
general methodology for using recursion to design efficient algorithms.



5.2. Divide-and-Conquer 263

5.2 Divide-and-Conquer

Thedivide-and-conquetechnique involves solving a particular computational prob-
lem by dividing it into one or more subproblems of smaller size, recursively solving
each subproblem, and then “merging” or “marrying” the solutions to the subprob-
lem(s) to produce a solution to the original problem.

We can model the divide-and-conquer approach by using a paramieiete-
note the size of the original problem, and &) denote this problem. We solve
the problemS(n) by solving a collection ok subproblems(n;), S(ny), ..., S(n),
wheren; < nfori=1,... k, and then merging the solutions to these subproblems.
For example, in the classic merge-sort algorithm (Section &(t),denotes the
problem of sorting a sequence whumbers. Merge-sort solves proble¥n) by
dividing it into two subproblem$(|n/2]) andS([n/2]), recursively solving these
two subproblems, and then merging the resulting sorted sequences into a single
sorted sequence that yields a solutiorta). The merging step take3(n) time.
This, the total running time of the merge-sort algorithn®islogn).

As with the merge-sort algorithm, the general divide-and-conquer technique
can be used to build algorithms that have fast running times.

521

Divide-and-Conquer Recurrence Equations

To analyze the running time of a divide-and-conquer algorithm we utilizzar-
rence equation(Section 1.1.4). That is, we let a functidr{n) denote the running
time of the algorithm on an input of sizg and characteriz€& (n) using an equation
that relatesT (n) to values of the functiom for problem sizes smaller tham In
the case of the merge-sort algorithm, we get the recurrence equation

TN — b ifn<?2
(M=19 2T(n/2)+bn ifn>2,

for some constarth > 0, taking the simplifying assumption thais a power of 2.

In fact, throughout this section, we take the simplifying assumptionritiatan
appropriate power, so that we can avoid using floor and ceiling functions. Every
asymptotic statement we make about recurrence equations will still be true, even if
we relax this assumption, but justifying this fact formally involves long and boring
proofs. As we observed above, we can show Tk is O(nlogn) in this case. In
general, however, we will possibly get a recurrence equation that is more challeng-
ing to solve than this one. Thus, itis useful to develop some general ways of solving
the kinds of recurrence equations that arise in the analysis of divide-and-conquer
algorithms.



264

Chapter 5. Fundamental Techniques

The lterative Substitution Method

One way to solve a divide-and-conquer recurrence equation is to ugterttese
substitution method, which is more colloquially known as the “plug-and-chug”
method. In using this method, we assume that the problemnsizdairly large

and we then substitute the general form of the recurrence for each occurrence of
the functionT on the right-hand side. For example, performing such a substitution
with the merge-sort recurrence equation yields the equation

T(n) = 2(2T(n/2%)+b(n/2))+bn
= 2%T(n/2%)+2bn.

Plugging the general equation férin again yields the equation

T(n) = 22(2T(n/2%)+b(n/2%))+ 2bn
= 2°T(n/2%)+3bn.

The hope in applying the iterative substitution method is that, at some point, we
will see a pattern that can be converted into a general closed-form equation (with
T only appearing on the left-hand side). In the case of the merge-sort recurrence
equation, the general form is

T(n) = 27T(n/2")+ibn.

Note that the general form of this equation shifts to the base dsg¢~ b, when
n= 2, that is, when = logn, which implies

T(n) = bn+bnlogn.

In other wordsT (n) is O(nlogn). In a general application of the iterative substitu-
tion technique, we hope that we can determine a general pattefi{ripand that
we can also figure out when the general fornToh) shifts to the base case.

From a mathematical point of view, there is one point in the use of the iterative
substitution technique that involves a bit of a logical “jump.” This jump occurs at
the point where we try to characterize the general pattern emerging from a sequence
of substitutions. Often, as was the case with the merge-sort recurrence equation,
this jump is quite reasonable. Other times, however, it may not be so obvious what
a general form for the equation should look like. In these cases, the jump may
be more dangerous. To be completely safe in making such a jump, we must fully
justify the general form of the equation, possibly using induction. Combined with
such a justification, the iterative substitution method is completely correct and an
often useful way of characterizing recurrence equations. By the way, the colloqui-
alism “plug-and-chug,” used to describe the iterative substitution method, comes
from the way this method involves “plugging” in the recursive part of an equation
for T(n) and then often “chugging” through a considerable amount of algebra in
order to get this equation into a form where we can infer a general pattern.



5.2. Divide-and-Conquer 265
The Recursion Tree

Another way of characterizing recurrence equations is to useettigsion tree
method. Like the iterative substitution method, this technique uses repeated sub-
stitution to solve a recurrence equation, but it differs from the iterative substitution
method in that, rather than being an algebraic approach, it is a visual approach. In
using the recursion tree method, we draw a fRe@here each node represents a
different substitution of the recurrence equation. Thus, each nodé@s a value

of the argumenn of the functionT (n) associated with it. In addition, we associate

an overheadwith each noder in R, defined as the value of the nonrecursive part

of the recurrence equation for For divide-and-conquer recurrences, the overhead
corresponds to the running time needed to merge the subproblem solutions coming
from the children ofv. The recurrence equation is then solved by summing the
overheads associated with all the nodeRot his is commonly done by first sum-
ming values across the levels Rfand then summing up these partial sums for all
the levels oRR.

Example 5.3: Consider the following recurrence equation:

TN — b ifn<3
(M= 3T(n/3)+bn ifn>3,

This is the recurrence equation that we get, for example, by modifying the merge-
sort algorithm so that we divide an unsorted sequence into three equal-sized se-
quences, recursively sort each one, and then do a three-way merge of three sorted
sequences to produce a sorted version of the original sequence. In the recursion tree
R for this recurrence, each internal nodbas three children and has a size and an
overhead associated with it, which corresponds to the time needed to merge the sub-
problem solutions produced s children. We illustrate the treR in Figure 5.4.

Note that the overheads of the nodes of each level sum.t@hus, observing that

the depth oR islogsn, we have that (n) is O(nlogn).

Overhead

Figure 5.4: The recursion treR used in Example 5.3, where we show the cumula-
tive overhead of each level.



266

Chapter 5. Fundamental Techniques

The Guess-and-Test Method

Another method for solving recurrence equations isghess-and-testechnique.

This technique involves first making an educated guess as to what a closed-form
solution of the recurrence equation might look like and then justifying that guess,
usually by induction. For example, we can use the guess-and-test method as a kind
of “binary search” for finding good upper bounds on a given recurrence equation.
If the justification of our current guess fails, then it is possible that we need to use
a faster-growing function, and if our current guess is justified “too easily,” then it
is possible that we need to use a slower-growing function. However, using this
technique requires our being careful, in each mathematical step we take, in trying
to justify that a certain hypothesis holds with respect to our current “guess.” We
explore an application of the guess-and-test method in the examples that follow.

Example 5.4: Consider the following recurrence equation (assuming the base case
T(n)=bforn<2):

T(n) =2T(n/2) +bnlogn.

This looks very similar to the recurrence equation for the merge-sort routine, so we
might make the following as our first guess:

First guessT (n) < cnlogn,

for some constartt > 0. We can certainly chooselarge enough to make this true
for the base case, so consider the case wier2. If we assume our first guess is
an inductive hypothesis that is true for input sizes smaller thaimen we have

T(n) = 2T(n/2)+bnlogn
< 2(c(n/2)log(n/2)) + bnlogn
= cn(logn—log2) + bnlogn
= cnlogn—cn+ bnlogn.

But there is no way that we can make this last line less than or eqoalagn for
n> 2. Thus, this first guess was not sufficient. Let us therefore try

Better guessT (n) < cnlog?n,

for some constant > 0. We can again chooselarge enough to make this true
for the base case, so consider the case wher2. If we assume this guess as an
inductive hypothesis that is true for input sizes smaller thehen we have

T(n) = 2T(n/2)+bnlogn
< 2(c(n/2)log?(n/2)) +bnlogn
= cn(log?n—2logn+ 1)+ bnlogn
= cnlog?n— 2cnlogn+ cn+ bnlogn
< cnlog?n,
providedc > b. Thus, we have shown thaitn) is indeedO(nlog?n) in this case.



5.2. Divide-and-Conquer 267

We must take care in using this method. Just because one inductive hypothesis
for T(n) does not work, that does not necessarily imply that another one propor-
tional to this one will not work.

Example 5.5: Consider the following recurrence equation (assuming the base case
T(n)=bforn<2):

T(n)=2T(n/2)+logn.

This recurrence is the running time for the bottom-up heap construction discussed
in Section 2.4.4, which we have shownQgn). Nevertheless, if we try to prove

this fact with the most straightforward inductive hypothesis, we will run into some
difficulties. In particular, consider the following:

First guessT (n) < cn,

for some constart > 0. We can choose large enough to make this true for the
base case, certainly, so consider the case whel. If we assume this guess as an
inductive hypothesis that is true for input sizes smaller thahen we have

T(n) = 2T(n/2)+logn
2(c(n/2)) +logn
= cn+logn.

IN

But there is no way that we can make this last line less than or eqoafdéon > 2.
Thus, this first guess was not sufficient, even tholugh) is indeedO(n). Still, we
can show this fact is true by using

Better guessT (n) < c(n—logn),

for some constartt > 0. We can again chooselarge enough to make this true for
the base case; in fact, we can show that it is true any tWime8. So consider the
case whem > 8. If we assume this guess as an inductive hypothesis that is true for
input sizes smaller tham then we have

T(n) = 2T(n/2)+logn
2c((n/2) —log(n/2)) +logn
cn—2clogn+ 2c+logn
c(n—logn) —clogn+ 2c+logn
c(n—logn),

IN

IN

providedc > 3 andn > 8. Thus, we have shown tha&tn) is indeedO(n) in this
case.

The guess-and-test method can be used to establish either an upper or lower
bound for the asymptotic complexity of a recurrence equation. Even so, as the
above example demonstrates, it requires that we have developed some skill with
mathematical induction.



268

Chapter 5. Fundamental Techniques

The Master Method

Each of the methods described above for solving recurrence equations is ad hoc
and requires mathematical sophistication in order to be used effectively. There is,
nevertheless, one method for solving divide-and-conquer recurrence equations that
is quite general and does not require explicit use of induction to apply correctly. It
is themaster method The master method is a “cook-book” method for determining
the asymptotic characterization of a wide variety of recurrence equations. Namely,
it is used for recurrence equations of the form

{c if n<d

TM=1 aT(n/b)+ f(n) ifn>d,

whered > 1 is an integer constard,> 0, ¢ > 0, andb > 1 are real constants, and

f(n) is a function that is positive fan > d. Such a recurrence equation would arise

in the analysis of a divide-and-conquer algorithm that divides a given problem into

a subproblems of size at mostb each, solves each subproblem recursively, and
then “merges” the subproblem solutions into a solution to the entire problem. The
function f(n), in this equation, denotes the total additional time needed to divide
the problem into subproblems and merge the subproblem solutions into a solution to
the entire problem. Each of the recurrence equations given above uses this form, as
do each of the recurrence equations used to analyze divide-and-conquer algorithms
given earlier in this book. Thus, it is indeed a general form for divide-and-conquer
recurrence equations.

The master method for solving such recurrence equations involves simply writ-
ing down the answer based on whether one of the three cases applies. Each case is
distinguished by comparing(n) to the special functiom®%2 (we will show later
why this special function is so important).

Theorem 5.6 [The Master Theorem]: Let f(n) andT (n) be defined as above.

1. If there is a small constamt> 0, such thatf (n) is O(nl°%2-¢), thenT (n) is
@(nlogba)'

2. If there is a constarit > 0, such thatf (n) is ©(n°%2logkn), thenT (n) is
O(nlogba|ogk+1 I’]).

3. If there are small constants> 0 andd < 1, such thatf (n) is Q(nl°%3+¢)
andaf(n/b) <&f(n), forn>d, thenT (n) isO(f(n)).

Case 1 characterizes the situation whife) is polynomially smaller than the
special functionn'°%2, Case 2 characterizes the situation wli¢n) is asymptoti-
cally close to the special function, and Case 3 characterizes the situationf\en
is polynomially larger than the special function.



5.2. Divide-and-Conquer 269

We illustrate the usage of the master method with a few examples (with each
taking the assumption that(n) = c for n < d, for constant€ > 1 andd > 1).

Example 5.7: Consider the recurrence
T(n)=4T(n/2)+n.
In this casen'®%?2 = n'°%4 = n?, Thus, we are in Case 1, fé(n) is O(n?>~¢) for
&£ = 1. This means thak (n) is ©(n?) by the master method.
Example 5.8: Consider the recurrence
T(n) =2T(n/2) +nlogn,

which is one of the recurrences given above. In this ca$&2 = nl°%2 = n,
Thus, we are in Case 2, wikth= 1, for f(n) is ©(nlogn). This means that (n) is
O(nlog?n) by the master method.

Example 5.9: Consider the recurrence
T(n)=T(n/3)+n,

which is the recurrence for a geometrically decreasing summation that starts with
In this casen'®®»? = n'°%1 — n = 1. Thus, we are in Case 3, féfn) is Q(n°+¢),
for e =1, andaf(n/b) =n/3 = (1/3)f(n). This means thar (n) is ©(n) by the
master method.

Example 5.10: Consider the recurrence
T(n) =9T(n/3) +n?>.

In this casen'®%2 = nl°%% = n2, Thus, we are in Case 3, sinéén) is Q(n**¢)
(for e = 1/2) andaf(n/b) = 9(n/3)%° = (1/3)Y/2f(n). This means thaf (n) is
O(n?®) by the master method.

Example 5.11: Finally, consider the recurrence
T(n) = 2T(n%2) +logn.

Unfortunately, this equation is not in a form that allows us to use the master method.
We can put it into such a form, however, by introducing the vari&btelogn,
which lets us write

T(n)=T(2% =2T(2¥?) +k
Substituting into this the equati@k) = T (2¥), we get that
S(k) =2S(k/2) + k.
Now, this recurrence equation allows us to use master method, which specifies that
S(k) is O(klogk). Substituting back fof (n) impliesT (n) is O(lognloglogn).

Rather than rigorously prove Theorem 5.6, we instead discuss the justification
behind the master method at a high level.



270 Chapter 5. Fundamental Techniques

If we apply the iterative substitution method to the general divide-and-conquer
recurrence equation, we get

T(n) = aT(n/b)+ f(n)
= a(aT(n/b?) + f(n/b))+ f(n) = aT(n/b?) +af(n/b) + f(n)
a’T(n/b®) 4 af(n/b?) +af(n/b) + f(n)

log, n—
al°%"T (1) 4 ng 1aif(n/bi)

logyn—1

n°%2T (1) + % a f(n/n'),

where the last substitution is based on the ideraitfp" = n'°%2, Indeed, this
equation is where the special function comes from. Given this closed-form char-
acterization ofT (n), we can intuitively see how each of the three cases is derived.
Case 1 comes from the situation whifm) is small and the first term above domi-
nates. Case 2 denotes the situation when each of the terms in the above summation
is proportional to the others, so the characterizatioit @f) is f(n) times a loga-
rithmic factor. Finally, Case 3 denotes the situation when the first term is smaller
than the second and the summation above is a sum of geometrically decreasing
terms that start wittf (n); hence,T (n) is itself proportional tof (n).

The proof of Theorem 5.6 formalizes this intuition, but instead of giving the
details of this proof, we present two applications of the master method below.

5.2.2 Integer Multiplication

We consider, in this subsection, the problem of multiplybig integers that is,
integers represented by a large number of bits that cannot be handled directly by
the arithmetic unit of a single processor. Multiplying big integers has applications
to data security, where big integers are used in encryption schemes.

Given two big integerd andJ represented withn bits each, we can easily
computel +J andl — J in O(n) time. Efficiently computing the produtt J using
the common grade-school algorithm requires, howe@¢n?) time. In the rest
of this section, we show that by using the divide-and-conquer technique, we can
design a subquadratic-time algorithm for multiplying tnbit integers.

Let us assume thatis a power of two (if this is not the case, we can paahdJ
with 0’s). We can therefore divide the bit representationisasfdJ in half, with one
half representing thlhigher-order bits and the other representing tlogver-order
bits. In particular, if we split into I, andl; andJ into J, andJ;, then

I = 152Y24,
J = 3224,



5.2. Divide-and-Conquer 271

Also, observe that multiplying a binary numbleby a power of two, ¥, is
trivial—it simply involves shifting left (that is, in the higher-order direction) the
numberl by k bit positions. Thus, provided a left-shift operation takes constant
time, multiplying an integer by*2takesO(k) time.

Let us focus on the problem of computing the produdt Given the expansion
of | andJ above, we can rewrite- J as

1-d = (122 41) - (3272 +3) = 102"+ 130272 + 103272 + 1,3

Thus, we can compute J by applying a divide-and-conquer algorithm that divides
the bit representations @fandJ in half, recursively computes the product four
products ofn/2 bits each (as described above), and then merges the solutions to
these subproducts @(n) time using addition and multiplication by powers of two.
We can terminate the recursion when we get down to the multiplication of two 1-bit
numbers, which is trivial. This divide-and-conquer algorithm has a running time
that can be characterized by the following recurrencer{fer2):

T(n) =4T(n/2)+cn,
for some constant > 0. We can then apply the master theorem to note that the
special functiom%2 = nl°%4 = n? in this case; hence, we are in Case 1 @rid)
is ©(n?). Unfortunately, this is no better than the grade-school algorithm.

The master method gives us some insight into how we might improve this al-
gorithm. If we can reduce the number of recursive calls, then we will reduce the
complexity of the special function used in the master theorem, which is currently
the dominating factor in our running time. Fortunately, if we are a little more clever
in how we define subproblems to solve recursively, we can in fact reduce the num-
ber of recursive calls by one. In particular, consider the product

(Ih_ ||) . (J| —Jh) =Ipd = hJ =W+ L1 3h.

This is admittedly a strange product to consider, but it has an interesting property.
When expanded out, it contains two of the products we want to compute (namely,
Ind andl;J,) and two products that can be computed recursively (namglyand

11J). Thus, we can compute J as follows:

-3 =102+ [(Ih= 1) - (3 = In) + Indn + 113 ]2Y2 + 1,3,

This computation requires the recursive computation of three product2diits
each, plugO(n) additional work. Thus, it results in a divide-and-conquer algorithm
with a running time characterized by the following recurrence equatiomfoR):

T(n)=3T(n/2)+cn,
for some constart > 0.
Theorem 5.12: We can multiply twan-bit integers irO(n*58%) time.

Proof: We apply the master theorem with the special functi§f? = n'°%.3;
hence, we are in Case 1 afign) is ©(n'°%3), which is itselfO(n'-58%). m



272

Chapter 5. Fundamental Techniques

Using divide-and-conquer, we have designed an algorithm for integer multipli-
cation that is asymptotically faster than the straightforward quadratic-time method.
We can actually do even better than this, achieving a running time that is “almost”
O(nlogn), by using a more complex divide-and-conquer algorithm calledasie
Fourier transform, which we discuss in Section 10.4.

5.2.3

Matrix Multiplication

Suppose we are given twox n matricesX andY, and we wish to compute their
productZ = XY, which is defined so that

Zfi jl = zxmk] ik il

which is an equation that immediately gives rise to a sin@yle?) time algorithm.

Another way of viewing this product is in terms of submatrices. That is, let
us assume thatis a power of two and let us partitioq, Y, andZ each into four
(n/2) x (n/2) matrices, so that we can rewrife= XY as

(F2)-(28)(55)

AE +BG
AF +BH
CE+DG
— CF+DH.

Thus,

I
J
K
L

We can use this set of equations in a divide-and-conquer algorithm that com-
putesZ = XY by computingl, J, K, andL from the subarray# throughG. By the
above equations, we can compuitel, K, andL from the eight recursively com-
puted matrix products ofn/2) x (n/2) subarrays, plus four additions that can be
done inO(n?) time. Thus, the above set of equations give rise to a divide-and-
conquer algorithm whose running tirién) is characterized by the recurrence

T(n) =8T(n/2) +br?,

for some constarti > 0. Unfortunately, this equation implies tH&¢n) is O(n?) by
the master theorem; hence, it is no better than the straightforward matrix multipli-
cation algorithm.

Interestingly, there is an algorithm known &fassen’s Algorithm that orga-
nizes arithmetic involving the subarrapsthroughG so that we can compute J,
K, andL using just seven recursive matrix multiplications. It is somewhat myste-
rious how Strassen discovered these equations, but we can easily verify that they
work correctly.



5.2. Divide-and-Conquer 273

We begin Strassen’s Algorithm by defining seven submatrix products:
= A(F—-H)

(A+B)H

(C+D)E

D(G—-E)

(A+D)(E+H)

(B—D)(G+H)

(A—C)(E+F).

Given these seven submatrix products, we can conlpage

I = $+S$+S-S
= (A+D)(E+H)+(B—D)(G+H)+D(G—E)—(A+B)H
= AE+DE+AH+DH +BG-DG+BH—DH + DG — DE — AH — BH
= AE+BG

We can computd as

LYY LY YD
I

J = S+9S
= A(F—H)+(A+B)H
= AF—AH+AH-+BH
= AF+BH.

We can comput& as
K = S$+$&
= (C+D)E+D(G-E)
CE+DE+DG-DE
= CE+DG.
Finally, we can computk as
L = S-S-S+S
= AFF-H)-(A-C)(E+F)—(C+D)E+(A+D)(E+H)
AF —AH—-AE+CE—-AF+CF—-CE—-DE+AE+ DE+AH+DH
= CF+DH.
Thus, we can computé = XY using seven recursive multiplications of matrices of
size(n/2) x (n/2). Thus, we can characterize the running tim@) as
T(n) =7T(n/2) +br?,
for some constarit > 0. Thus, by the master theorem, we have the following:

Theorem 5.13: We can multiply twan x n matrices inO(n'°97) time.

Thus, with a fair bit of additional complication, we can perform the multiplica-
tion for n x n matrices in time0(n%8%), which iso(n®) time. As admittedly com-
plicated as Strassen’s matrix multiplication is, there are actually much more com-
plicated matrix multiplication algorithms, with running times as lowCi{s?3"®).



274 Chapter 5. Fundamental Techniques

5.3 Dynamic Programming

In this section, we discuss tlidlynamic programmingalgorithm-design technique.

This technique is similar to the divide-and-conquer technique, in that it can be
applied to a wide variety of different problems. Conceptually, the dynamic pro-
gramming technique is different from divide-and-conquer, however, because the
divide-and-conquer technique can be easily explained in a sentence or two, and can
be well illustrated with a single example. Dynamic programming takes a bit more
explaining and multiple examples before it can be fully appreciated.

The extra effort needed to fully appreciate dynamic programming is well worth
it, though. There are few algorithmic techniques that can take problems that seem
to require exponential time and produce polynomial-time algorithms to solve them.
Dynamic programming is one such technique. In addition, the algorithms that re-
sult from applications of the dynamic programming technique are usually quite
simple—often needing little more than a few lines of code to describe some nested
loops for filling in a table.

5.3.1 Matrix Chain-Product

Rather than starting out with an explanation of the general components of the dy-
namic programming technique, we start out instead by giving a classic, concrete
example. Suppose we are given a collectiomdivo-dimensional matrices for
which we wish to compute the product

A=Ag-A1-Ar---An_1,

whereA; is ad; x di; matrix, fori =0,1,2,...,n— 1. In the standard matrix
multiplication algorithm (which is the one we will use), to multiplga e-matrix B
times ane x f-matrixC, we compute théi, j)th entry of the product as

zB[i,k] Clk, jl.

This definition implies that matrix multiplication is associative, that is, it implies
thatB- (C-D) = (B-C)-D. Thus, we can parenthesize the expressiorAfany

way we wish and we will end up with the same answer. We will not necessar-
ily perform the same number of primitive (that is, scalar) multiplications in each
parenthesization, however, as is illustrated in the following example.

Example 5.14: LetB be a2 x 10-matrix, letC be al0x 50-matrix, and leD be
a50x 20-matrix. ComputingB- (C-D) requires2-10-20+ 10-50-20 = 10400
multiplications, whereas computirig-C) - D requires2-10-50+ 2-50- 20 = 3000
multiplications.



5.3. Dynamic Programming 275

Thematrix chain-productproblem is to determine the parenthesization of the
expression defining the produktthat minimizes the total number of scalar multi-
plications performed. Of course, one way to solve this problem is to simply enu-
merate all the possible ways of parenthesizing the expressichdad determine
the number of multiplications performed by each one. Unfortunately, the set of all
different parenthesizations of the expression&as equal in number to the set of
all different binary trees that haveexternal nodes. This number is exponential in
n. Thus, this straightforward (“brute force”) algorithm runs in exponential time, for
there are an exponential number of ways to parenthesize an associative arithmetic
expression (the number is equal to tite Catalan number which isQ(4"/n%2)).

Defining Subproblems

We can improve the performance achieved by the brute force algorithm signifi-
cantly, however, by making a few observations about the nature of the matrix chain-
product problem. The first observation is that the problem can be splguorob-

lems In this case, we can define a number of different subproblems, each of which
is to compute the best parenthesization for some subexpre&sidn i1 ---Aj. As

a concise notation, we us¢ j to denote the minimum number of multiplications
needed to compute this subexpression. Thus, the original matrix chain-product
problem can be characterized as that of computing the valNgof;. This obser-
vation is important, but we need one more in order to apply the dynamic program-
ming technique.

Characterizing Optimal Solutions

The other important observation we can make about the matrix chain-product prob-
lem is that it is possible to characterize an optimal solution to a particular subprob-
lem in terms of optimal solutions to its subproblems. We call this property the
subproblem optimalitycondition.

In the case of the matrix chain-product problem, we observe that, no matter how
we parenthesize a subexpression, there has to be some final matrix multiplication
that we perform. That is, a full parenthesization of a subexpreggiof 1 ---A;
has to be of the fornfA; - - Ax) - (Akr1---Aj), for somek e {i,i+1,...,j—1}.
Moreover, for whichevek is the right one, the products\ - - - Ax) and(Ax;1- - - Aj)
must also be solved optimally. If this were not so, then there would be a global
optimal that had one of these subproblems solved suboptimally. But this is impos-
sible, since we could then reduce the total number of multiplications by replacing
the current subproblem solution by an optimal solution for the subproblem. This
observation implies a way of explicitly defining the optimization problemNoy
in terms of other optimal subproblem solutions. Namely, we can comyytey
considering each pladewhere we could put the final multiplication and taking the
minimum over all such choices.



276

Chapter 5. Fundamental Techniques
Designing a Dynamic Programming Algorithm

The above discussion implies that we can characterize the optimal subproblem so-
lution N; j as

Niaj = .min.{Ni,k+ Nk+1,j +didk+1dj+1},
i<k<]j

where we note that
Nij =0,

since no work is needed for a subexpression comprising a single matrix. gt is,

is the minimum, taken over all possible places to perform the final multiplication,
of the number of multiplications needed to compute each subexpression plus the
number of multiplications needed to perform the final matrix multiplication.

The equation foN; j looks similar to the recurrence equations we derive for
divide-and-conquer algorithms, but this is only a superficial resemblance, for there
is an aspect of the equatidy ; that makes it difficult to use divide-and-conquer
to computeN, ;. In particular, there is @haring of subproblemsyoing on that
prevents us from dividing the problem into completely independent subproblems
(as we would need to do to apply the divide-and-conquer technique). We can,
nevertheless, use the equationfyy to derive an efficient algorithm by computing
N j values in a bottom-up fashion, and storing intermediate solutions in a table of
N; j values. We can begin simply enough by assigming=0 fori =0,1,...,n—1.

We can then apply the general equation Ky to computeN; ;1 values, since
they depend only of;; andN;1 11 values, which are available. Given thii ;1
values, we can then compute tNg.» values, and so on. Therefore, we can build
N ; values up from previously computed values until we can finally compute the
value ofNpn—1, Which is the number that we are searching for. The details of this
dynamic programmingsolution are given in Algorithm 5.5.

Algorithm MatrixChain(do, ... ,0n):
Input: Sequencel,...,d, of integers
Output: Fori,j=0,...,n—1, the minimum number of multiplicationis
needed to compute the produgt A - - - Aj, whereAy is ady x di1 matrix

fori+~—0Oton—1do
Nij <0
for b—1ton—1do
fori<Oton—b—1do
j—i+b
Nij < +oo
for k—itoj—1do
Ni j <= min{N; j, Ni x + N1, + didy1dj 11}

Algorithm 5.5:  Dynamic programming algorithm for the matrix chain-product
problem.



5.3. Dynamic Programming 277

Analyzing the Matrix Chain-Product Algorithm

Thus, we can computlly,—1 with an algorithm that consists primarily of three
nested for-loops. The outside loop is executetimes. The loop inside is exe-
cuted at mosh times. And the inner-most loop is also executed at mdshes.
Therefore, the total running time of this algorithmagn?).

Theorem 5.15: Given a chain-product afi two-dimensional matrices, we can
compute a parenthesization of this chain that achieves the minimum number of
scalar multiplications i©(n%) time.

Proof: We have shown above how we can compute the optimaiberof scalar
multiplications. But how do we recover the actual parenthesization?

The method for computing the parenthesization itself is is actually quite straight-
forward. We modify the algorithm for computintg ; values so that any time we
find a new minimum value foN; j, we store, with\; j, the indexk that allowed us
to achieve this minimum. [

In Figure 5.6, we illustrate the way the dynamic programming solution to the
matrix chain-product problem fills in the arré&jy

N ]

Figure 5.6: lllustration of the way the matrix chain-product dynamic-programming
algorithm fills in the arrayN.

Now that we have worked through a complete example of the use of the dy-
namic programming method, let us discuss the general aspects of the dynamic pro-
gramming technique as it can be applied to other problems.



278

Chapter 5. Fundamental Techniques

5.3.2

The General Technique

The dynamic programming technique is used primarilydiptimizationproblems,
where we wish to find the “best” way of doing something. Often the number of
different ways of doing that “something” is exponential, so a brute-force search
for the best is computationally infeasible for all but the smallest problem sizes.
We can apply the dynamic programming technique in such situations, however, if
the problem has a certain amount of structure that we can exploit. This structure
involves the following three components:

Simple Subproblems: There has to be some way of breaking the global optimiza-
tion problem into subproblems, each having a similar structure to the original
problem. Moreover, there should be a simple way of defining subproblems
with just a few indices, like, |, k, and so on.

Subproblem Optimality: An optimal solution to the global problem must be a
composition of optimal subproblem solutions, using a relatively simple com-
bining operation. We should not be able to find a globally optimal solution
that contains suboptimal subproblems.

Subproblem Overlap: Optimal solutions to unrelated subproblems can contain
subproblems in common. Indeed, such overlap improves the efficiency of a
dynamic programming algorithm that stores solutions to subproblems.

Now that we have given the general components of a dynamic programming
algorithm, we next give another example of its use.

53.3

The 0-1 Knapsack Problem

Suppose a hiker is about to go on a trek through a rain forest carrying a single
knapsack. Suppose further that she knows the maximum total waidhat she
can carry, and she has a Saif n different useful items that she can potentially take
with her, such as a folding chair, a tent, and a copy of this book. Let us assume that
each item has an integer weight; and a benefit valul;, which is the utility value
that our hiker assigns to itemn Her problem, of course, is to optimize the total
value of the seT of items that she takes with her, without going over the weight
limit W. That is, she has the following objective:

maximize § by subject to ZrWi <W.

e IS

Her problem is an instance of tlfiel knapsack problem This problem is called
a “0-1" problem, because each item must be entirely accepted or rejected. We
consider the fractional version of this problem in Section 5.1.1, and we study how
knapsack problems arise in the context of Internet auctions in Exercise R-5.12.



5.3. Dynamic Programming 279

A First Attempt at Characterizing Subproblems

We can easily solve the 0-1 knapsack problen®i2") time, of course, by enu-
merating all subsets @& and selecting the one that has highest total benefit from
among all those with total weight not exceedWy This would be an inefficient
algorithm, however. Fortunately, we can derive a dynamic programming algorithm
for the 0-1 knapsack problem that runs much faster than this in most cases.

As with many dynamic programming problems, one of the hardest parts of
designing such an algorithm for the 0-1 knapsack problem is to find a nice char-
acterization for subproblems (so that we satisfy the three properties of a dynamic
programming algorithm). To simplify the discussion, number the itemS @s
1,2,...,nand define, for eacke {1,2,...,n}, the subset

S = {items inSlabeled 12, ... k}.

One possibility is for us to define subproblems by using a pararkesethat sub-
problemk is the best way to fill the knapsack using only items from the&Sset his

is a valid subproblem definition, but it is not at all clear how to define an optimal
solution for indexk in terms of optimal subproblem solutions. Our hope would be
that we would be able to derive an equation that takes the best solution using items
from §_1 and considers how to add the itdnto that. Unfortunately, if we stick

with this definition for subproblems, then this approach is fatally flawed. For, as we
show in Figure 5.7, if we use this characterization for subproblems, then an optimal
solution to the global problem may actually contain a suboptimal subproblem.

@ 3,2 (5,4) (8,5 | (43)

(b) (3.2) (5.4) (8,5)

-t 20 >|

Figure 5.7: An example showing that our first approach to defining a knapsack
subproblem does not work. The setonsists of five items denoted by the the
(weight benefi) pairs(3,2), (5,4), (8,5), (4,3), and(10,9). The maximum total
weight isW = 20: (a) best solution with the first four items; (b) best solution with
the first five items. We shade each item in proportion to its benefit.




280

Chapter 5. Fundamental Techniques

A Better Subproblem Characterization

One of the reasons that defining subproblems only in terms of an ikdeXa-

tally flawed is that there is not enough information represented in a subproblem
to provide much help for solving the global optimization problem. We can correct
this difficulty, however, by adding a second parameteket us therefore formulate
each subproblem as that of computBig, w|, which is defined as the maximum to-

tal value of a subset & from among all those subsets having total weigkdactly

w. We haveB|0,w| = 0 for eachw < W, and we derive the following relationship

for the general case

Blk Wl — Blk— 1,w] if we >w
[kow] = max{B[k— 1,w], Blk—1,w—w] + by} else.

That is, the best subset §f that has total weightv is either the best subset §f 1

that has total weightv or the best subset &;_; that has total weightv— wy plus

the itemk. Since the best subset §f that has total weightv must either contain
item k or not, one of these two choices must be the right choice. Thus, we have
a subproblem definition that is simple (it involves just two parameteesd w)

and satisfies the subproblem optimization condition. Moreover, it has subproblem
overlap, for the optimal way of summing exactiyjto weight may be used by many
future subproblems.

In deriving an algorithm from this definition, we can make one additional ob-
servation, namely, that the definitionBfk, w] is built from B[k— 1, w]| and possibly
B[k—1,w—w]. Thus, we can implement this algorithm using only a single aBay
which we update in each of a series of iterations indexed by a paraksig¢hat at
the end of each iteratioB[w] = B[k, w]. This gives us Algorithm 5.8} Knapsack).

Algorithm 01Knapsack(SW):
Input: SetS of n items, such that itemh has positive benefit; and positive
integer weightw;; positive integer maximum total weigii¢
Output: Forw = 0,...,W, maximum benefiB[w| of a subset ofS with total
weightw

for w« 0toW do
B[W] —0
for k< 1tondo
for w < W downtowy do
if Bjw —wi] + bk > B[w] then
B[w] < B[w — wy] + by

Algorithm 5.8: Dynamic programming algorithm for solving the 0-1 knapsack
problem.



5.3. Dynamic Programming 281

Analyzing the 0-1 Knapsack Dynamic Programming Algorithm

The running time of thé&1Knapsack algorithm is dominated by the two nested
for-loops, where the outer one iteratemes and the inner one iterates at mast
times. After it completes we can find the optimal value by locating the Blug
that is greatest among all < W. Thus, we have the following:

Theorem 5.16: Given an integeWW and a seb of n items, each of which has a
positive benefit and a positive integer weight, we can find the highest benefit subset
of Swith total weight at mostV in O(nW) time.

Proof: We have given Algorithm 5.8(Knapsack) for constructing thevalue of

the maximum-benefit subset 8that has total weight at mo#t using an arra of
benefit values. We can easily convert our algorithm into one that outputs the items
in a best subset, however. We leave the details of this conversion as an exarcise.

Pseudo-Polynomial-Time Algorithms

In addition to being another useful application of the dynamic programming tech-
nigue, Theorem 5.16 states something very interesting. Namely, it states that the
running time of our algorithm depends on a param¥fdhat, strictly speaking, is

not proportional to the size of the input (thé&ems, together with their weights and
benefits, plus thaumberW). Assuming thatV is encoded in some standard way
(such as a binary number), then it takes ddlyogW) bits to encod&V. Moreover,

if W is very large (sayV = 2"), then this dynamic programming algorithm would
actually be asymptotically slower than the brute force method. Thus, technically
speaking, this algorithm is not a polynomial-time algorithm, for its running time is
not actually a function of theizeof the input.

It is common to refer to an algorithm such as our knapsack dynamic program-
ming algorithm as being pseudo-polynomial timalgorithm, for its running time
depends on the magnitude of a number given in the input, not its encoding size. In
practice, such algorithms should run much faster than any brute-force algorithm,
but it is not correct to say they are true polynomial-time algorithms. In fact, there is
a theory known adlP-completenessvhich is discussed in Chapter 13, that states
that it is very unlikely that anyone will ever find a true polynomial-time algorithm
for the 0-1 knapsack problem.

Elsewhere in this book, we give additional applications of the dynamic pro-
gramming technique for computing reachability in a directed graph (Section 6.4.2)
and for testing the similarity of two strings (Section 9.4).



282 Chapter 5. Fundamental Techniques

5.4 Exercises

Reinforcement

R-5.1 Let S= {a,b,c,d,e, f,g} be a collection of objects with benefit-weight values
as follows:a: (12, 4), b:(10,6), c:(8,5), d:(11,7), e:(14,3), f:(7,1), 9:(9,6).
What is an optimal solution to the fractional knapsack problentfassuming
we have a sack that can hold objects with total weight 187 Show your work.

R-5.2 Describe how to implement thEaskSchedule method to run irD(nlogn) time.

R-5.3 Suppose we are given a set of tasks specified by pairs of the start times and finish
times asT = {(1,2),(1,3),(1,4),(2.,5).(3,7),(4,9),(5.6).(6,8),(7,9)}. Solve
the task scheduling problem for this set of tasks.

R-5.4 Characterize each of the following recurrence equations using the master method
(assuming that (n) = ¢ for n < d, for constantg > 0 andd > 1).

. T(n)=2T(n/2) +logn

. T(n)=8T(n/2)+n?

. T(n) = 16T(n/2) + (nlogn)*

. T(n)=7T(n/3)+n

. T(n) =9T(n/3) +nlogn

R-5.5 Use the divide-and-conquer algorithm, from Section 5.2.2, to compute 10110011
10111010 in binary. Show your work.

R-5.6 Use Strassen’s matrix multiplication algorithm to multiply the matrices

3 2 1 5
X—(4 8) and Y—(g 6)'

R-5.7 A complex numbea+ bi, wherei = /—1, can be represented by the pairb).
Describe a method performing only three real-number multiplications to compute
the pair(e, f) representing the product af+ bi andc+ di.

O Q0 TY

R-5.8 Boolean matrices are matrices such that each entry is 0 or 1, and matrix multipli-
cation is performed by using AND feland OR for+. Suppose we are given two
n x n random Boolean matrices andB, so that the probability that any entry
in either is 1, is Yk. Show that ifk is a constant, then there is an algorithm for
multiplying A andB whose expected running time@n?). What ifk is n?

R-5.9 What is the best way to multiply a chain of matrices with dimensions that are
10x 5,5%x2,2x 20, 20x 12, 12x 4, and 4x 60? Show your work.

R-5.10 Design an efficient algorithm for the matrix chain multiplication problem that
outputs a fully parenthesized expression for how to multiply the matrices in the
chain using the minimum number of operations.

R-5.11 Solve Exercise R-5.1 for the 0-1 knapsack problem.

R-5.12 Sally is hosting an Internet auction to selividgets. She receives bids, each
of the form “I wantk; widgets ford; dollars,” fori = 1,2,...,m. Characterize
her optimization problem as a knapsack problem. Under what conditions is this
a 0-1 versus fractional problem?



5.4. Exercises

283

Creativity

C-5.1 A native Australian named Anatjari wishes to cross a desert carrying only a sin-

gle water bottle. He has a map that marks all the watering holes along the way.
Assuming he can walk miles on one bottle of water, design an efficient algo-
rithm for determining where Anatjari should refill his bottle in order to make as
few stops as possible. Argue why your algorithm is correct.

C-5.2 Consider the singlenachine schedulingporoblem where we are given a Skt

of tasks specified by their start times and finish times, as in the task scheduling
problem, except now we have only one machine and we wish to maximize the
number of tasks that this single machine performs. Design a greedy algorithm
for this single machine scheduling problem and show that it is correct. What is
the running time of this algorithm?

C-5.3 Describe an efficient greedy algorithm for making change for a specified value

using a minimum number of coins, assuming there are four denominations of
coins (called quarters, dimes, nickels, and pennies), with values 25, 10, 5, and 1,
respectively. Argue why your algorithm is correct.

C-5.4 Give an example set of denominations of coins so that a greedy change making

algorithm will not use the minimum number of coins.

C-5.5 In theart gallery guardingproblem we are given a line that represents a long

hallway in an art gallery. We are also given a Xet {xo,X1,...,%,—1} Of real
numbers that specify the positions of paintings in this hallway. Suppose that a
single guard can protect all the paintings within distance at most 1 of his or her
position (on both sides). Design an algorithm for finding a placement of guards
that uses the minimum number of guards to guard all the paintings with positions
in X.

C-5.6 Design a divide-and-conquer algorithm for finding the minimum and the maxi-

mum element oh numbers using no more than/2 comparisons.

C-5.7 Given a seP of nteams in some sport,raund-robin tournamentis a collection

of games in which each team plays each other team exactly once. Design an
efficient algorithm for constructing a round-robin tournament assumirgga
power of 2.

C-5.8 Let a set of interval& = {[ap, bo], [a1,b1],...,[an—1,bn_1]} Of the intervall0, 1]

be given, with 0< g < b; <1, fori =0,1,...,n— 1. Suppose further that we
assign a height; to each intervaja;, bj] in S. Theupper envelopef Sis defined
to be a list of pairg(xo, o), (X1,€1), (X2,C2), - - -, (Xm, Cm), (Xm+1,0)], with xo =

0 andxmy1 = 1, and ordered by; values, such that, for each subintergak
[xi,Xi+1] the height of the highest interval 8containingsis ¢;, fori =0,1,...,m.
Design arO(nlogn)-time algorithm for computing the upper envelopesof

C-5.9 How can we modify the dynamic programming algorithm from simply comput-

ing the best benefit value for the 0-1 knapsack problem to computing the assign-
ment that gives this benefit?

C-5.10 Suppose we are given a collectibr= {ay, ay, ..., an} of n positive integers that

add up toN. Design arO(nN)-time algorithm for determining whether there is
asubseB C A, suchthab , cgai = Yqca_pai-



284

Chapter 5. Fundamental Techniques

C-5.11 Let P be a convex polygon (Section 12.5.1) thangulation of P is an addition
of diagonals connecting the verticesP®&o that each interior face is a triangle.
Theweightof a triangulation is the sum of the lengths of the diagonals. Assuming
that we can compute lengths and add and compare them in constant time, give an
efficient algorithm for computing a minimum-weight triangulatiorof

C-5.12 A grammar G is a way of generating strings of “terminal” characters from a
nonterminal symbds, by applying simple substitution rules, callpcbductions
If B— Bis a production, then we can convert a string of the forBy into the
stringafy. A grammar is inChomsky normal formif every production is of the
form“A — BC’ or “A — a,” whereA, B, andC are nonterminal characters aad
is a terminal character. Design &¢n®)-time dynamic programming algorithm
for determining if stringc = xgX; - - - Xn_1 €can be generated from start symBol

C-5.13 Suppose we are given amode rooted tre&, such that each nodan T is given
a weightw(v). Anindependent setf T is a subse§ of the nodes of such that
no node inSis a child or parent of any other node § Design an efficient
dynamic programming algorithm to find the maximum-weight independent set
of the nodes inT, where the weight of a set of nodes is simply the sum of the
weights of the nodes in that set. What is the running time of your algorithm?

Projects

P-5.1 Design and implement a big integer package supporting the four basic arithmetic
operations.

P-5.2 Implement a system for efficiently solving knapsack problems. Your system
should work for either fractional or 0-1 knapsack problems. Perform an experi-
mental analysis to test the efficiency of your system.

Chapter Notes

The term “greedy algorithm” was coined by Edmonds [64] in 1971, although the concept
existed before then. For more information about the greedy method and the theory that
supports it, which is known as matroid theory, please see the book by Papadimitriou and
Steiglitz [164].

The divide-and-conquer technique is a part of the folklore of data structure and al-
gorithm design. The master method for solving divide-and-conquer recurrences traces its
origins to a paper by Bentley, Haken, and Saxe [30]. The divide-and-conquer algorithm
for multiplying two large integers i©(n*58%) time is generally attributed to the Russians
Karatsuba and Ofman [111]. The asymptotically fastest known algorithm for multiplying
two n-digit numbers is an FFT-based algorithm by 8chége and Strassen [181] that runs
in O(nlognloglogn) time.

Dynamic programming was developed in the operations research community and for-
malized by Bellman [26]. The matrix chain-product solution we described is due to God-
bole [78]. The asymptotically fastest method is due to Hu and Shing [101, 102]. The dy-
namic programming algorithm for the knapsack problem is found in the book by Hu [100].
Hirchsberg [95] shows how to solve the longest common substring problem in the same
time given above, but with linear space (see also [56]).



