Abstract Data Types (ADTs)

- An abstract data type (ADT) is an abstraction of a data structure
- An ADT specifies:
 - Data stored
 - Operations on the data
 - Error conditions associated with operations

Example: ADT modeling a simple stock trading system
- The data stored are buy/sell orders
- The operations supported are:
 - order buy(stock, shares, price)
 - order sell(stock, shares, price)
 - void cancel(order)
- Error conditions:
 - Buy/sell a nonexistent stock
 - Cancel a nonexistent order

The Stack ADT

- The Stack ADT stores arbitrary objects
- Insertions and deletions follow the last-in first-out scheme
- Think of a spring-loaded plate dispenser
- Main stack operations:
 - push(object): inserts an element
 - object pop(): removes and returns the last inserted element
- Auxiliary stack operations:
 - object top(): returns the last inserted element without removing it
 - integer size(): returns the number of elements stored
 - boolean isEmpty(): indicates whether no elements are stored

Exceptions

- Attempting the execution of an operation of ADT may sometimes cause an error condition, called an exception
- Exceptions are said to be "thrown" by an operation that cannot be executed
- In the Stack ADT, operations pop and top cannot be performed if the stack is empty
- Attempting the execution of pop or top on an empty stack throws an EmptyStackException

Applications of Stacks

- Direct applications
 - Page-visited history in a Web browser
 - Undo sequence in a text editor
 - Chain of method calls in the Java Virtual Machine
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures
Method Stack in the JVM

- The Java Virtual Machine (JVM) keeps track of the chain of active methods with a stack.
- When a method is called, the JVM pushes on the stack a frame containing:
 - Local variables and return value
 - Program counter, keeping track of the statement being executed
- When a method ends, its frame is popped from the stack and control is passed to the method on top of the stack.

```
main() {
    int i = 5;
    foo(i);
}
foo(int j) {
    int k;
    k = j+1;
    bar(k);
}
bar(int m) {
    ...
}
```

Array-based Stack

- A simple way of implementing the Stack ADT uses an array.
- We add elements from left to right.
- A variable keeps track of the index of the top element.

Algorithm \(\text{size}() \)
\[
\text{return } t + 1
\]

Algorithm \(\text{push}(o) \)
\[
\text{if } t = S.\text{length} - 1 \text{ then}
\quad \text{throw } \text{FullStackException}
\text{else}
\quad t \leftarrow t + 1
\quad S[t] \leftarrow o
\]

Array-based Stack (cont.)

- The array storing the stack elements may become full.
- A push operation will then throw a FullStackException.
- Limitation of the array-based implementation:
 - Not intrinsic to the Stack ADT.

Performance and Limitations

- Performance:
 - Let \(n \) be the number of elements in the stack.
 - The space used is \(O(n) \).
 - Each operation runs in time \(O(1) \).

- Limitations:
 - The maximum size of the stack must be defined a priori and cannot be changed.
 - Trying to push a new element into a full stack causes an implementation-specific exception.

Computing Spans

- We show how to use a stack as an auxiliary data structure in an algorithm.
- Given an array \(X \), the span \(S[i] \) of \(X[i] \) is the maximum number of consecutive elements \(X[j] \) immediately preceding \(X[i] \) and such that \(X[j] \leq X[i] \).
- Spans have applications to financial analysis.
 - E.g., stock at 52-week high.

Quadratic Algorithm

Algorithm \(\text{spans}(X, n) \)
\[
\text{Input array } X \text{ of } n \text{ integers}
\quad S \leftarrow \text{new array of } n \text{ integers}
\quad \text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do}
\quad \quad s \leftarrow 1
\quad \quad \text{while } s \leq i \land X[i-s] \leq X[i] \text{ do}
\quad \quad \quad s \leftarrow s + 1
\quad \quad \text{end while}
\quad \quad S[i] \leftarrow s
\quad \text{end for}
\quad \text{return } S
\]

Algorithm \(\text{spans}(X, n) \) runs in \(O(n^2) \) time.
Computing Spans with a Stack

- We keep in a stack the indices of the elements visible when "looking back".
- We scan the array from left to right.
 - Let \(i \) be the current index.
 - We pop indices from the stack until we find index \(j \) such that \(X(i) < X(j) \).
 - We set \(S(i) \leftarrow i - j \).
 - We push \(X \) onto the stack.

Growable Array-based Stack

- In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one.
- How large should the new array be?
 - Incremental strategy: increase the size by a constant \(c \).
 - Doubling strategy: double the size.

Algorithm `push(X)`

\[
\text{if } i = S.length - 1 \text{ then}
\quad A \leftarrow \text{new array of size } \\
\quad \text{for } i \leftarrow 0 \text{ to } i \text{ do}
\quad A[i] \leftarrow S[i]
\quad S[i] \leftarrow \text{i + 1}
\quad S[0] \leftarrow 0
\]

Linear Algorithm

- Each index of the array
 - Is pushed into the stack exactly once.
 - Is popped from the stack at most once.
- The statements in the while-loop are executed at most \(n \) times.
- Algorithm `span2` runs in \(O(n) \) time.

Comparison of the Strategies

- We compare the incremental strategy and the doubling strategy by analyzing the total time \(T(n) \) needed to perform a series of \(n \) push operations.
- We assume that we start with an empty stack represented by an array of size 1.
- We call amortized time of a push operation the average time taken by a push over the series of operations, i.e., \(T(n)/n \).

Incremental Strategy Analysis

- We replace the array \(k = \frac{n}{c} \) times.
- The total time \(T(n) \) of a series of \(n \) push operations is proportional to
 \[
 n + c + 2c + 3c + 4c + \cdots + kc = \\
 n + c(1 + 2 + 3 + \cdots + k) = \\
 n + \frac{ck(k + 1)}{2}
 \]
- Since \(c \) is a constant, \(T(n) \) is \(O(n + k^2) \), i.e., \(O(n^2) \).
- The amortized time of a push operation is \(O(n) \).

Doubling Strategy Analysis

- We replace the array \(k = \log_2 n \) times.
- The total time \(T(n) \) of a series of \(n \) push operations is proportional to
 \[
 n + 1 + 2 + 4 + 8 + \cdots + 2^k = \\
 n + 2^k + 1 - 1 = 2n - 1
 \]
- \(T(n) \) is \(O(n) \).
- The amortized time of a push operation is \(O(1) \).
Stack Interface in Java

- Java interface corresponding to our Stack ADT
- Requires the definition of class EmptyStackException
- Different from the built-in Java class java.util.Stack

```java
public interface Stack {
    public int size();
    public boolean isEmpty();
    public Object top() throws EmptyStackException;
    public void push(Object o);
    public Object pop() throws EmptyStackException;
}
```

Array-based Stack in Java

```java
public class ArrayStack implements Stack {
    // holds the stack elements
    private Object S[];
    // index to top element
    private int top = -1;
    // constructor
    public ArrayStack(int capacity) {
        S = new Object[capacity];
    }
    public Object pop() throws EmptyStackException {
        if (isEmpty())
            throw new EmptyStackException("Empty stack: cannot pop");
        Object temp = S[top];
        // facilitates garbage collection
        S[top] = null;
        top = top - 1;
        return temp;
    }
}
```