Outline and Reading
- Weighted graphs (§7.1)
 - Shortest path problem
 - Shortest path properties
- Dijkstra’s algorithm (§7.1.1)
 - Algorithm
 - Edge relaxation
- The Bellman-Ford algorithm (§7.1.2)
- Shortest paths in dags (§7.1.3)
- All-pairs shortest paths (§7.2.1)

Shortest Paths

Weighted Graphs
- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
 - In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Path Problem
- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v.
 - Length of a path is the sum of the weights of its edges.
- Example:
 - Shortest path between Providence and Honolulu
- Applications
 - Internet packet routing
 - Flight reservations
 - Driving directions

Shortest Path Properties
- Property 1:
 A subpath of a shortest path is itself a shortest path
- Property 2:
 There is a tree of shortest paths from a start vertex to all the other vertices
- Example:
 Tree of shortest paths from Providence

Dijkstra’s Algorithm
- The distance of a vertex v from a vertex x is the length of a shortest path between x and v
- Dijkstra’s algorithm computes the distances of all the vertices from a given start vertex x
- Assumptions:
 - the graph is connected
 - the edges are undirected
 - the edge weights are nonnegative
- We grow a “cloud” of vertices, beginning with x and eventually covering all the vertices
- We store with each vertex v a label $d(v)$ representing the distance of v from x in the subgraph consisting of the cloud and its adjacent vertices
- At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label, $d(u)$
 - We update the labels of the vertices adjacent to u
Shortest Path

Analysis

- **Graph operations**
 - Method `incidentEdges` is called once for each vertex.
- **Label operations**
 - We get the distance and locator labels of vertex \(z \) \(\Theta(\deg(z)) \) times.
 - Setting/getting a label takes \(\Theta(1) \) time.
- **Priority queue operations**
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes \(\Theta(\log m) \) time.
 - The key of a vertex in the priority queue is modified at most \(\deg(z) \) times, where each key change takes \(\Theta(\log m) \) time.
- **Dijkstra's algorithm**
 - Runs in \(\Theta(n + m \log n) \) time, provided the graph is represented by the adjacency list structure.
 - Recall that \(\sum \deg(v) = 2m \).
 - The running time can also be expressed as \(\Theta(m \log n) \) since the graph is connected.

Extension

- **Using the template method pattern**, we can extend Dijkstra's algorithm to return a tree of shortest paths from the start vertex to all other vertices.
- **We store with each vertex a third label:**
 - Distance \((d(v)) \) label
 - Locator in priority queue
- In the edge relaxation step, we update the parent label

Edge Relaxation

- Consider an edge \(e = (u, z) \) such that
 - \(u \) is the vertex most recently added to the cloud
 - \(z \) is not in the cloud
- The relaxation of edge \(e \) updates distance \(d(z) \) as follows:
 \[
 d(z) \leftarrow \min\{d(z), d(u) + \text{weight}(e)\}
 \]

Dijkstra's Algorithm

- A priority queue stores the vertices outside the cloud.
 - Key: distance
 - Element: vertex
- Locator-based methods
 - `insert(E, r)` returns a locator.
 - `replaceKey(k, l)` changes the key of an item.
- We store two labels with each vertex:
 - Distance \((d(v)) \) label
 - Locator in priority queue

Example

Example (cont.)

Algorithm

- **Dijkstra's Distance** \([G, s]\)
 - new heap-based priority queue
 - for all \(v \in G.vertices() \)
 - if \(v = s \)
 - `setDistance(v, 0)`
 - else
 - `setDistance(v, \infty)`
 - `setLocator(v, (s, e))`
 - while \(-Q.isEmpty()\)
 - \(u \leftarrow Q.removeMin() \)
 - for all \(e \in G.incidentEdges(u) \)
 - `relaxEdge(e)`
 - \(z \leftarrow G.opposite(u) \)
 - \(r \leftarrow \text{getDistance}(z) + \text{weight}(e) \)
 - if \(r < \text{getDistance}(z) \)
 - `replaceKey(getLocator(z), r)`

- **Dijkstra's Shortest Paths Tree** \([G, s]\)
 - for all \(v \in G.vertices() \)
 - `setParent(v, s)`
 - for all \(e \in G.incidentEdges(u) \)
 - `relaxEdge(e)`
 - \(z \leftarrow G.opposite(u) \)
 - \(r \leftarrow \text{getDistance}(z) + \text{weight}(e) \)
 - if \(r < \text{getDistance}(z) \)
 - `setDistance(z, r)`
 - `setParent(z, u)`
 - `replaceKey(getLocator(z), r)`
Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing distance.

- Suppose it didn’t find all shortest distances. Let F be the first wrong vertex the algorithm processed.
- When the previous node, D, on the true shortest path was considered, its distance was correct.
- But the edge (D,F) was relaxed at that time!
- Thus, so long as \(d(F) > d(D) \), F’s distance cannot be wrong. That is, there is no wrong vertex.

Bellman-Ford Algorithm

- Works even with negative-weight edges
- Must assume directed edges (for otherwise we would have negative-weight cycles)
- Iteration i finds all shortest paths that use \(i \) edges.
- Running time: \(O(nm) \).

```
Algorithm BellmanFord(G, s)
for all \( v \in G.\text{vertices} \)
if \( v = s \)
    setDistance(\( v, 0 \))
else
    setDistance(\( v, \infty \))
for \( i ← 1 \) to \( n-1 \) do
    for each \( e \in G.\text{edges} \)
    { relax edge \( e \) }
    \( u \leftarrow G.\text{origin}(e) \)
    \( z \leftarrow G.\text{opposite}(u,e) \)
    \( r \leftarrow \text{getDistance}(u) + \text{weight}(e) \)
    if \( r < \text{getDistance}(z) \)
        setDistance(\( z, r \))
```

Bellman-Ford Example

Nodes are labeled with their \(d(v) \) values

DAG-based Algorithm

- Works even with negative-weight edges
- Uses topological order
- Doesn’t use any fancy data structures
- Is much faster than Dijkstra’s algorithm
- Running time: \(O(n+m) \).

```
Algorithm DAGDistance(G, s)
for all \( v \in G.\text{vertices} \)
if \( v = s \)
    setDistance(\( v, 0 \))
else
    setDistance(\( v, \infty \))
Perform a topological sort of the vertices
for \( u ← 1 \) to \( n \) do
    { in topological order }
    for each \( e \in G.\text{outEdges}(u) \)
    { relax edge \( e \) }
    \( z \leftarrow G.\text{opposite}(u,e) \)
    \( r \leftarrow \text{getDistance}(u) + \text{weight}(e) \)
    if \( r < \text{getDistance}(z) \)
        setDistance(\( z, r \))
```

DAG Example

Nodes are labeled with their \(d(v) \) values
All-Pairs Shortest Paths

- Find the distance between every pair of vertices in a weighted directed graph G.
- We can make n calls to Dijkstra's algorithm (if no negative edges), which takes $O(nm \log n)$ time.
- Likewise, n calls to Bellman-Ford would take $O(n^2m)$ time.
- We can achieve $O(n^3)$ time using dynamic programming (similar to the Floyd-Warshall algorithm).

Algorithm AllPair(G) [assumes vertices 1,...,n]

for all vertex pairs (i,j)
 if $i = j$
 $D_{0}[i,i] \leftarrow 0$
 else if (i,j) is an edge in G
 $D_{0}[i,j] \leftarrow$ weight of edge (i,j)
 else
 $D_{0}[i,j] \leftarrow +\infty$

for $k \leftarrow 1$ to n
do
 for $i \leftarrow 1$ to n
do
 for $j \leftarrow 1$ to n
do
 $D_{k}[i,j] \leftarrow \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$

return D_{n}