The Selection Problem

- Given an integer k and n elements \(x_1, x_2, \ldots, x_n\) taken from a total order, find the k-th smallest element in this set.
- Of course, we can sort the set in \(O(n \log n)\) time and then index the k-th element.

\[
\begin{array}{c}
7 & 4 & 9 & 6 & 2 \\
\rightarrow & & & & \\
2 & 4 & 6 & 7 & 9
\end{array}
\]

- Can we solve the selection problem faster?

Quick-Select (§ 4.7)

Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:

- **Prune:** pick a random element \(x\) (called pivot) and partition \(S\) into:
 - \(L\) elements less than \(x\)
 - \(E\) elements equal to \(x\)
 - \(G\) elements greater than \(x\)
- **Search:** depending on \(k\), either answer is in \(E\), or we need to recurse in either \(L\) or \(G\)

\[
\begin{array}{c}
\left|L\right| < k \leq \left|L\right| + \left|E\right| \\
\text{(done)}
\end{array}
\]

Partition

We partition an input sequence as in the quick-sort algorithm:

- We remove, in turn, each element \(y\) from \(S\) and
- We insert \(y\) into \(L, E\) or \(G\), depending on the result of the comparison with the pivot \(x\)
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes \(O(1)\) time
- Thus, the partition step of quick-select takes \(O(n)\) time

Algorithm partition(S, p)

- **Input**: sequence \(S\), position \(p\) of pivot
- **Output**: subsequences \(L, E, G\) of the elements of \(S\) less than, equal to, or greater than the pivot, resp.
- **L, E, G** ← empty sequences
- \(x\) ← \(S\).remove\((p)\)
- \(\text{while } S\text{.isEmpty}() \text{ do}
 \begin{align*}
 y & \leftarrow S\text{.remove}(S\text{.first}()) \\
 \text{if } y < x & \text{ then } L\text{.insertLast}(y) \\
 \text{else if } y = x & \text{ then } E\text{.insertLast}(y) \\
 \text{else } & \text{ then } G\text{.insertLast}(y)
 \end{align*}
- **return** \(L, E, G\)

Quick-Select Visualization

- An execution of quick-select can be visualized by a recursion path
- Each node represents a recursive call of quick-select, and stores \(k\) and the remaining sequence

\[
\begin{array}{c}
k=5, S=(7 4 9 3 2 6 5 1 8) \\
k=2, S=(7 4 9 6 5 8) \\
k=2, S=(7 4 6 5) \\
k=1, S=(7 6 5) \\
5
\end{array}
\]

Expected Running Time

- Consider a recursive call of quick-select on a sequence of size \(s\)
 - **Good call**: the sizes of \(L\) and \(G\) are each less than \(3s/4\)
 - **Bad call**: one of \(L\) and \(G\) has size greater than \(3s/4\)

- A call is good with probability \(1/2\)
 - \(1/2\) of the possible pivots cause good calls:

\[
\begin{array}{c}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 \\
\text{Bad pivots} \quad \text{Good pivots} \quad \text{Bad pivots}
\end{array}
\]
Expected Running Time, Part 2

- **Probabilistic Fact #1:** The expected number of coin tosses required in order to get one head is two.
- **Probabilistic Fact #2:** Expectation is a linear function:
 - \(E(X + Y) = E(X) + E(Y) \)
 - \(E(cX) = cE(X) \)
- Let \(T(n) \) denote the expected running time of quick-select.
- By Fact #2,
 - \(T(n) \leq T(3n/4) + bn \) (expected # of calls before a good call)
- By Fact #1,
 - \(T(n) \leq T(3n/4) + 2bn \)
- That is, \(T(n) \) is a geometric series:
 - \(T(n) \leq 2bn + 2b(3/4)n + 2b(3/4)^2n + \ldots \)
- So \(T(n) \) is \(O(n) \).
- We can solve the selection problem in \(O(n) \) expected time.

Deterministic Selection

- We can do selection in \(O(n) \) worst-case time.
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 - Divide \(S \) into \(n/5 \) sets of 5 each
 - Find a median in each set
 - Recursively find the median of the “baby” medians.
- See Exercise C-4.24 for details of analysis.