Quick-Sort

Outline and Reading
- Quick-sort (§4.3)
 - Algorithm
 - Partition step
 - Quick-sort tree
 - Execution example
- Analysis of quick-sort (4.3.1)
- In-place quick-sort (§4.8)
- Summary of sorting algorithms

Quick-Sort
- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element \(x \) (called pivot) and partition \(S \) into
 - \(L \) elements less than \(x \)
 - \(E \) elements equal \(x \)
 - \(G \) elements greater than \(x \)
 - Recur: sort \(L \) and \(G \)
 - Conquer: join \(L \), \(E \) and \(G \)

Partition
- We partition an input sequence as follows:
 - We remove, in turn, each element \(y \) from \(S \) and
 - We insert \(y \) into \(L \), \(E \) or \(G \), depending on the result of the comparison with the pivot \(x \)
 - Each insertion and removal is at the beginning or at the end of a sequence, and hence takes \(O(1) \) time
 - Thus, the partition step of quick-sort takes \(O(n) \) time

Quick-Sort Tree
- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example
- Pivot selection

Algorithm: partition(S, p)
Input sequence \(S \), position \(p \) of pivot
Output subsequences \(L \), \(E \), \(G \) of the elements of \(S \) less than, equal to, or greater than the pivot, resp.

while \(-\neg S.isEmpty()\)
 \(y \leftarrow S.remove(S.first())\)
 if \(y < x \)
 \(L.insertLast(y)\)
 else if \(y = x \)
 \(E.insertLast(y)\)
 else \(G.insertLast(y)\)
return \(L \), \(E \), \(G \)
Execution Example (cont.)
- Partition, recursive call, pivot selection

\[
\begin{array}{c}
2 & 4 & 3 & 1 \\
\end{array}
\]

\[
\begin{array}{c}
7 & 2 & 9 & 4 & 3 & 7 & 6 & 1 \\
\end{array}
\]

Execution Example (cont.)
- Partition, recursive call, base case

\[
\begin{array}{c}
2 & 4 & 3 & 1 \\
\end{array}
\]

\[
\begin{array}{c}
7 & 2 & 9 & 4 & 3 & 7 & 6 & 1 \\
\end{array}
\]

Execution Example (cont.)
- Recursive call, ..., base case, join

\[
\begin{array}{c}
2 & 4 & 3 & 1 \rightarrow 1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{c}
7 & 2 & 9 & 4 & 3 & 7 & 6 & 1 \\
\end{array}
\]

Execution Example (cont.)
- Recursive call, pivot selection

\[
\begin{array}{c}
2 & 4 & 3 & 1 \rightarrow 1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{c}
7 & 2 & 9 & 4 & 3 & 7 & 6 & 1 \\
\end{array}
\]

Execution Example (cont.)
- Partition, ..., recursive call, base case

\[
\begin{array}{c}
2 & 4 & 3 & 1 \rightarrow 1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{c}
7 & 2 & 9 & 4 & 3 & 7 & 6 & 1 \\
\end{array}
\]

Execution Example (cont.)
- Join, join

\[
\begin{array}{c}
2 & 4 & 3 & 1 \rightarrow 1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{c}
7 & 2 & 9 & 4 & 3 & 7 & 6 & 1 \\
\end{array}
\]
Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size n.
 - **Good call:** the sizes of L and G are each less than $3n/4$.
 - **Bad call:** one of L and G has size greater than $3n/4$.

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place.
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that:
 - the elements less than the pivot have rank less than a.
 - the elements equal to the pivot have rank between a and b.
 - the elements greater than the pivot have rank greater than b.
- The recursive calls consider:
 - elements with rank less than a.
 - elements with rank greater than b.

Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>quick-sort</td>
<td>$O(n \log n)$</td>
<td>in-place, randomized, fastest (good for large inputs)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>in-place, fast (good for large inputs)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>sequential data access, fast (good for huge inputs)</td>
</tr>
</tbody>
</table>