Strings
- A string is a sequence of characters
- Examples of strings:
 - Java program
 - HTML document
 - DNA sequence
 - Digitized image
- An alphabet Σ is the set of possible characters for a family of strings
- Example of alphabets:
 - ASCII
 - Unicode
 - $\{0, 1\}$
 - $\{A, C, G, T\}$

Boyer-Moore Heuristics
- The Boyer-Moore's pattern matching algorithm is based on two heuristics
 - Looking-glass heuristic: Compare P with a subsequence of T moving backwards
 - Character-Jump heuristic: When a mismatch occurs at $T[i] = c$
 - If P contains c, shift P to align the last occurrence of c in P with $T[i]$
 - Else, shift P to align $P[i]$ with $T[i+1]$
- Example

Brute-Force Algorithm
- The brute-force pattern matching algorithm compares the pattern P with the text T for each possible shift of P relative to T, until either
 - A match is found, or
 - All placements of the pattern have been tried
- Brute-force pattern matching runs in time $O(nm)$
- Example of worst case:
 - $T = aaah \ldots ah$
 - $P = aaah$
 - May occur in images and DNA sequences
 - Unlikely in English text

Last-Occurrence Function
- Boyer-Moore's algorithm preprocesse the pattern P and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where $L(c)$ is defined as
 - The largest index i such that $P[i] = c$ or
 - -1 if no such index exists
- Example:
 - $\Sigma = \{a, b, c, d\}$
 - $L(a) = 4$
 - $L(b) = 5$
 - $L(c) = 3$
 - $L(d) = 1$
- The last-occurrence function can be represented by an array indexed by the numeric codes of the characters
- The last-occurrence function can be computed in time $O(m + \sigma)$, where m is the size of P and σ is the size of Σ
The Boyer-Moore Algorithm

Algorithm BoyerMooreMatch(T, P, j)

1. L ← lastOccurrenceFunction(P, Σ)
2. j ← m - 1
3. repeat
 4. if (T[j] = P[1])
 5. return i (match at i)
 6. else
 7. j ← j - 1
8. else
 9. character-jump
 10. i ← L[T[j]]
11. j ← m
12. until j ≥ 0
13. return -1 (no match)

Example

Case 1: j ≤ 1 + 1

Case 2: 1 + l ≥ j

Analysis

- Boyer-Moore’s algorithm runs in time \(O(m + n)\)
- Example of worst case:
 - \(T = \text{aa...a} \)
 - \(P = \text{baaa} \)
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore’s algorithm is significantly faster than the brute-force algorithm on English text

The KMP Algorithm - Motivation

- Knuth-Morris-Pratt’s algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of \(P[0..j]\) that is a suffix of \(P[1..j]\)

KMP Failure Function

- Knuth-Morris-Pratt’s algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself.
- The failure function \(F[j]\) is defined as the size of the largest prefix of \(P[0..j]\) that is also a suffix of \(P[1..j]\).
- Knuth-Morris-Pratt’s algorithm modifies the brute-force algorithm so that if a mismatch occurs at \(P[j] \neq T[i]\) we set \(j ← F[j - 1]\).

The KMP Algorithm

- The failure function can be represented by an array and can be computed in \(O(m)\) time.
- At each iteration of the while-loop, either
 - \(i\) increases by one, or
 - the shift amount \(i - j\) increases by at least one (observe that \(F[j - 1] < j\)).
- Hence, there are no more than \(2m\) iterations of the while-loop.
- Thus, KMP’s algorithm runs in optimal time \(O(m + n)\)

Algorithm KMPMatch(T, P)

- \(F \leftarrow \text{failureFunction}(P)\)
- \(j \leftarrow 0\)
- while \(i < n\)
 - if \(T[j] = P[i]\)
 - return \(i\) (match)
 - else
 - if \(j = m - 1\)
 - return \(-1\) (no match)
 - else
 - if \(j > 0\)
 - \(j \leftarrow F[j - 1]\)
 - else
 - \(j \leftarrow j + 1\)
 - \(i \leftarrow i + 1\)
- return \(-1\) (no match)
The failure function can be represented by an array and can be computed in $O(m)$ time.

The construction is similar to the KMP algorithm itself.

At each iteration of the while-loop, either

- i increases by one, or
- the shift amount $i-j$ increases by at least one (observe that $F(j-1) < j$)

Hence, there are no more than $2m$ iterations of the while-loop.

Algorithm failureFunction

```
F[0] ← 0
i ← 1
j ← 0
while i < m
    if P[i] = P[j]
        F[i] ← j + 1
        i ← i + 1
        j ← j + 1
    else if j > 0 then
        j ← F[j-1]
    else
        F[i] ← 0
        i ← i + 1
```

Example

Pattern Matching 13

```
1 2 3
a b a c
F[10] = 0
```

Pattern Matching 14

```
1 2 3 4 5
a b c a a
F[10] = 1
```

```
13 14 15 16 17 18 19
a b c a a
F[19] = 2
```