Merge Sort

Outline and Reading

- Divide-and-conquer paradigm (§4.1.1)
- Merge-sort (§4.1.1)
 - Algorithm
 - Merging two sorted sequences
 - Merge-sort tree
 - Execution example
 - Analysis
- Generic merging and set operations (§4.2.1)
- Summary of sorting algorithms (§4.2.1)

Divide-and-Conquer

- Divide-and-conquer is a general algorithm design paradigm:
 - Divide: divide the input data into two disjoint subsets S_1 and S_2
 - Recur: solve the subproblems associated with S_1 and S_2.
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S.
- The base case for the recursion are subproblems of size 0 or 1.

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about $n/2$ elements each.
 - Recur: recursively sort S_1 and S_2.
 - Conquer: merge S_1 and S_2 into a unique sorted sequence.

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree:
 - Each node represents a recursive call of merge-sort and stores an unsorted sequence before the execution and its partition.
 - The root is the initial call.
 - The leaves are calls on subsequences of size 0 or 1.

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B.
- Merging two sorted sequences, each with $n/2$ elements and implemented by means of a doubly linked list, takes $O(n)$ time.

Algorithm $mergeSort(A, B)$

Input:
- sequences A and B with $n/2$ elements each
- S, a sequence containing the union of A and B

Output:
- sorted sequence S with n elements

Output:

```
S ← empty sequence
while ¬LisaEmpty() ∧ ¬BisEmpty()
  if A.first() ≤ B.first()
    S.insertLast(A.remove(A.first()))
  else
    S.insertLast(B.remove(B.first()))
while ¬LisaEmpty()
  S.insertLast(A.remove(A.first()))
while ¬BisEmpty()
  S.insertLast(B.remove(B.first()))
return S
```
Execution Example

Partition

7 2 9 4 3 8 6 1

Recursive call, partition

7 2 9 4

Recursive call, base case

7 2 9 4

Merge
Merge Sort

Execution Example (cont.)
- Recursive call, ..., base case, merge

![Diagram](merge-sort-diagram.png)

Execution Example (cont.)
- Merge

![Diagram](merge-sort-diagram.png)

Analysis of Merge-Sort
- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
 - The overall amount or work done at the nodes of depth i is $O(n)$
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make $2^i + 1$ recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

<table>
<thead>
<tr>
<th>depth</th>
<th>n</th>
<th>$n/2^i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$n/2$</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>$n/2^i$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for small data sets (< 1K)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for small data sets (< 1K)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>fast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in-place</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for large data sets (1K — 1M)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>fast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sequential data access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for huge data sets (> 1M)</td>
</tr>
</tbody>
</table>