Minimum Spanning Trees

Outline and Reading
- Minimum Spanning Trees (§7.3)
 - Definitions
 - A crucial fact
- The Prim-Jarnik Algorithm (§7.3.2)
- Kruskal's Algorithm (§7.3.1)
- Baruva's Algorithm (§7.3.3)

Minimum Spanning Trees
- Cycle Property
 - Let T be a minimum spanning tree of a weighted graph G.
 - Let e be an edge of G that is not in T and let C be the cycle formed by e with T.
 - For every edge f of C, $\text{weight}(f) \leq \text{weight}(e)$.
 - Proof:
 - By contradiction
 - If $\text{weight}(f) > \text{weight}(e)$, we can get a spanning tree of smaller weight by replacing e with f.

Partition Property
- Consider a partition of the vertices of G into subsets U and V.
- Let e be an edge of minimum weight across the partition.
- There is a minimum spanning tree of G containing edge e.
- Proof:
 - Let T be an MST of G.
 - If T does not contain e, consider the cycle C formed by e with T.
 - By the cycle property, $\text{weight}(e) \leq \text{weight}(f)$.
 - Thus, $\text{weight}(f) = \text{weight}(e)$.
 - We obtain another MST by replacing f with e.

Prim-Jarnik’s Algorithm
- Similar to Dijkstra’s algorithm (for a connected graph).
- We pick an arbitrary vertex x and we grow the MST as a cloud of vertices, starting from x.
- We store with each vertex v a label $d(v) = \text{smallest weight of an edge connecting } x \text{ to a vertex in the cloud}$.
- At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label.
 - We update the labels of the vertices adjacent to u.
Prim-Jarnik’s Algorithm (cont.)

- A priority queue stores the vertices outside the cloud
 - Key: distance
 - Element: vertex
- Locator-based methods
 - insert(u,v) returns a locator
 - replaceKey(LA) changes the key of an item
- We store three labels with each vertex:
 - Distance
 - Parent edge in MST
 - Locator in priority queue

Algorithm: Prim-JarnikMST(G)

```
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()
  if v ≠ s
    setDistance(v, 0)
    setParent(v, 0)
    setLocator(v, 0)
    insert(Q, v)

while ¬Q.isEmpty()
  u ← Q.removeMin()
  for all e ∈ G.incidentEdges(u)
    r ← G.opposite(e)
    if r ≠ setParent(e)
      w ← setDistance(r)
      setDistance(r) ← getDistance(u, e) + w
      if ¬Q.insert(Q, r)
  Q.replaceKey(Q, Locator(u, w))
```

Example

- **Example (contd.)**

Analysis

- **Graph operations**
 - Method incidentEdges is called once for each vertex
- **Label operations**
 - We set/get the distance, parent and locator labels of vertex \(t \) in \(O(\text{deg}(t)) \) time
 - Setting/getting a label takes \(O(1) \) time
- **Priority queue operations**
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes \(O(\log m) \) time
 - The key of a vertex \(w \) in the priority queue is modified at most \(\text{deg}(w) \) times, where each key change takes \(O(\log m) \) time
 - Prim-Jarnik’s algorithm runs in \(O(m + m \log m) \) time provided the graph is represented by the adjacency list structure
 - Recall that \(\sum \text{deg}(v) = 2m \)
 - The running time is \(O(m \log m) \) since the graph is connected

Data Structure for Kruskal Algorithm

- The algorithm maintains a forest of trees
- An edge is accepted if it connects distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with the operations:
 - `find(u)`: return the set storing \(u \)
 - `union(u, v)`: replace the sets storing \(u \) and \(v \) with their union
Representation of a Partition

- Each set is stored in a sequence
- Each element has a reference back to the set
- Operation `find(u)` takes O(1) time, and returns the set of which u is a member.
- In operation `union(u,v)`, we move the elements of the smaller set to the sequence of the larger set and update their references
- The time for operation `union(u,v)` is min(n_u, n_v), where n_u and n_v are the sizes of the sets storing u and v.
- Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most log n times.

Partition-Based Implementation

- A partition-based version of Kruskal’s Algorithm performs cloud merges as unions and tests as finds.

Algorithm Kruskal(G):

- **Input:** A weighted graph G.
- **Output:** An MST T for G.
- Let P be a partition of the vertices of G, where each vertex forms a separate set.
- Let Q be a priority queue storing the edges of G, sorted by their weights.
- Let T be an initially-empty tree.
- While Q is not empty:
 - (u,v) ← Q.removeMinElement()
 - If P.find(u) ≠ P.find(v):
 - Add (u,v) to T
 - P.union(u,v)
- Return T.

Running time: O((n+m)log n)

Example

<table>
<thead>
<tr>
<th>JFK</th>
<th>BOS</th>
<th>MIA</th>
<th>ORD</th>
<th>LAX</th>
<th>DFW</th>
<th>SFO</th>
<th>BWI</th>
<th>PVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>867</td>
<td>2704</td>
<td>187</td>
<td>849</td>
<td>1258</td>
<td>849</td>
<td>1391</td>
<td>184</td>
<td>946</td>
</tr>
<tr>
<td>1464</td>
<td>1090</td>
<td>1391</td>
<td>184</td>
<td>946</td>
<td>1391</td>
<td>184</td>
<td>946</td>
<td>1090</td>
</tr>
<tr>
<td>1235</td>
<td>2342</td>
<td>1235</td>
<td>1121</td>
<td>1258</td>
<td>1121</td>
<td>1258</td>
<td>1258</td>
<td>1258</td>
</tr>
<tr>
<td>337</td>
<td>802</td>
<td>1090</td>
<td>1121</td>
<td>1258</td>
<td>1258</td>
<td>1258</td>
<td>1258</td>
<td>1258</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>JFK</th>
<th>BOS</th>
<th>MIA</th>
<th>ORD</th>
<th>LAX</th>
<th>DFW</th>
<th>SFO</th>
<th>BWI</th>
<th>PVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>867</td>
<td>2704</td>
<td>187</td>
<td>849</td>
<td>1258</td>
<td>849</td>
<td>1391</td>
<td>184</td>
<td>946</td>
</tr>
<tr>
<td>1464</td>
<td>1090</td>
<td>1391</td>
<td>184</td>
<td>946</td>
<td>1391</td>
<td>184</td>
<td>946</td>
<td>1090</td>
</tr>
<tr>
<td>1235</td>
<td>2342</td>
<td>1235</td>
<td>1121</td>
<td>1258</td>
<td>1121</td>
<td>1258</td>
<td>1258</td>
<td>1258</td>
</tr>
<tr>
<td>337</td>
<td>802</td>
<td>1090</td>
<td>1121</td>
<td>1258</td>
<td>1258</td>
<td>1258</td>
<td>1258</td>
<td>1258</td>
</tr>
</tbody>
</table>
Baruvka's Algorithm

- Like Kruskal's Algorithm, Baruvka's algorithm grows many "clouds" at once.

Algorithm \(\text{BaruvkaMST}(G) \)

1. \(T \leftarrow \langle \text{the vertices of } G \rangle \)
2. While \(T \) has fewer than \(n-1 \) edges do
 1. For each connected component \(C \) in \(T \) do
 1. Let edge \(e \) be the smallest-weight edge from \(C \) to another component in \(T \).
 2. If \(e \) is not already in \(T \) then
 1. Add edge \(e \) to \(T \)
3. Return \(T \)

- Each iteration of the while-loop halves the number of connected components in \(T \).
 - The running time is \(O(m \log n) \).