The Greedy Method Technique

- **The greedy method** is a general algorithm design paradigm, built on the following elements:
 - **configurations**: different choices, collections, or values to find
 - **objective function**: a score assigned to configurations, which we want to either maximize or minimize
- It works best when applied to problems with the **greedy-choice** property:
 - a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

Making Change

- **Problem**: A dollar amount to reach and a collection of coin amounts to use to get there.
- **Configuration**: A dollar amount yet to return to a customer plus the coins already returned
- **Objective function**: Minimize number of coins returned.
- **Greedy solution**: Always return the largest coin you can

Example 1:
- Coins are valued $.32, $.08, $.01
 - Has the greedy-choice property, since no amount over $.32 can be made with a minimum number of coins by omitting a $.32 coin (similarly for amounts over $.08, but under $.32).

Example 2:
- Coins are valued $.30, $.20, $.05, $.01
 - Does not have greedy-choice property, since $.40 is best made with two $.20's, but the greedy solution will pick three coins (which ones?)

The Fractional Knapsack Problem

- **Given**: A set S of n items, with each item i having
 - \(b_i \) - a positive benefit
 - \(w_i \) - a positive weight
- **Goal**: Choose items with maximum total benefit but with weight at most W.
 - If we are allowed to take fractional amounts, then this is the **fractional knapsack problem**.
 - In this case, we let \(x_i \) denote the amount we take of item i
- **Objective**: maximize \(\sum_{i=1}^{n} \frac{b_i x_i}{w_i} \)
- **Constraint**: \(\sum_{i=1}^{n} x_i \leq W \)

Example

- **Given**: A set S of n items, with each item i having
 - \(b_i \) - a positive benefit
 - \(w_i \) - a positive weight
- **Goal**: Choose items with maximum total benefit but with weight at most W.

<table>
<thead>
<tr>
<th>Items</th>
<th>Weight</th>
<th>Benefit</th>
<th>Value ($ per ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 ml</td>
<td>$12</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>8 ml</td>
<td>$32</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2 ml</td>
<td>$40</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>6 ml</td>
<td>$30</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1 ml</td>
<td>$50</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>10 ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution:
- 1 ml of 5
- 2 ml of 3
- 6 ml of 4
- 1 ml of 2
The Fractional Knapsack Algorithm

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)
- Correctness: Suppose there is a better solution
 - How much of i: min{wi−xi, xj}
 - Thus, there is no better solution than the greedy one

Algorithm
\[
\text{fractionalKnapsack}(S, W) \\\---