Divide-and-Conquer

Divide and conquer is a general algorithm design paradigm:
- **Divide:** divide the input data \(S \) in two or more disjoint subsets \(S_1, S_2, \ldots \).
- **Recur:** solve the subproblems recursively.
- **Conquer:** combine the solutions for \(S_1, S_2, \ldots \) into a solution for \(S \).

The base case for the recursion are subproblems of constant size. Analysis can be done using recurrence equations.

Outline and Reading

- Divide-and-conquer paradigm (§5.2)
- Review Merge-sort (§4.1.1)
- Recurrence Equations (§5.2.1)
 - Iterative substitution
 - Recursion trees
 - Guess-and-test
 - The master method
- Integer Multiplication (§5.2.2)

Merge-Sort Review

- Merge-sort on an input sequence \(S \) with \(n \) elements consists of three steps:
 - **Divide:** partition \(S \) into two sequences \(S_1 \) and \(S_2 \) of about \(n/2 \) elements each.
 - **Recur:** recursively sort \(S_1 \) and \(S_2 \).
 - **Conquer:** merge \(S_1 \) and \(S_2 \) into a unique sorted sequence.

Algorithm

```plaintext```
Algorithm mergeSort(S, C)
Input sequence S with n elements, comparator C
Output sequence S sorted according to C
if S.size() > 1
    (S1, S2) <- partition(S, n/2)
    mergeSort(S1, C)
    mergeSort(S2, C)
S <- merge(S1, S2)
```

Recurrence Equation Analysis

The conquer step of merge-sort consists of merging two sorted sequences, each with \(n/2 \) elements and implemented by means of a doubly linked list, takes at most \(bn \) steps, for some constant \(b \).

Likewise, the basis case (\(n < 2 \)) will take at most \(b \) steps.

Therefore, if we let \(T(n) \) denote the running time of merge-sort:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}
\]

We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
- That is, a solution that has \(T(n) \) only on the left-hand side.

Iterative Substitution

In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern:

- \(T(n) = 2T(n/2) + bn \)
- \(= 2^2T(n/4) + 2bn \)
- \(= 2^3T(n/8) + 3bn \)
- \(= 2^iT(n/2^i) + ibn \)

Note that base, \(T(n)=b \), case occurs when \(2^i=n \). That is, \(i = \log n \).

So,

\[
T(n) = bn + bn \log n
\]

Thus, \(T(n) \) is \(O(n \log n) \).
The Recursion Tree

- Draw the recursion tree for the recurrence relation and look for a pattern:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
<td>bn</td>
</tr>
<tr>
<td>1</td>
<td>n/2</td>
<td>bn</td>
</tr>
<tr>
<td>i</td>
<td>n/2^i</td>
<td>bn log n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(last level plus all previous levels)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total time = bn + bn log n

Guess-and-Test Method

- In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

\[T(n) = \begin{cases}
 \quad \quad b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases} \]

- Guess: \(T(n) < cn \log n \)
 - \(T(n) = 2T(n/2) + bn \log n \)
 - \(= 2(cn/2) \log(n/2) + bn \log n \)
 - \(= cn \log n - cn \log 2 + bn \log n \)
 - \(= cn \log n - cn + bn \log n \)

- Wrong: we cannot make this last line be less than \(cn \log n \)

Master Method

- Many divide-and-conquer recurrence equations have the form:

\[T(n) = \begin{cases}
 \quad \quad c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{\log_b a}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. if \(f(n) \) is \(\Theta(n^{\log_b a} \log^k n) \), then \(T(n) \) is \(\Theta(n^{\log_b a} \log^{k+1} n) \)
 3. if \(f(n) \) is \(\Omega(n^{\log_b a} \log^{k+1} n) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Master Method, Example 1

- The form:

\[T(n) = \begin{cases}
 \quad \quad c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. if \(f(n) \) is \(\Theta(n^{\log_b a - \epsilon} \log^k n) \), then \(T(n) \) is \(\Theta(n^{\log_b a - \epsilon} \log^{k+1} n) \)
 3. if \(f(n) \) is \(\Omega(n^{\log_b a - \epsilon} \log^{k+1} n) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:

\[T(n) = 4T(n/2) + n \]

Solution: \(\log_a n = 2 \), so case 1 says \(T(n) = O(n^2) \).

Master Method, Example 2

- The form:

\[T(n) = \begin{cases}
 \quad \quad c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. if \(f(n) \) is \(\Theta(n^{\log_b a - \epsilon} \log^k n) \), then \(T(n) \) is \(\Theta(n^{\log_b a - \epsilon} \log^{k+1} n) \)
 3. if \(f(n) \) is \(\Omega(n^{\log_b a - \epsilon} \log^{k+1} n) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:

\[T(n) = 2T(n/2) + n \log n \]

Solution: \(\log_a n = 1 \), so case 2 says \(T(n) = O(n \log^2 n) \).
Master Method, Example 3

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{k-\epsilon}) \), then \(T(n) \) is \(\Theta(n^k) \)
 2. if \(f(n) \) is \(\Theta(n^{k-\epsilon} \log^i n) \), then \(T(n) \) is \(\Theta(n^{k-\epsilon} \log^{i+1} n) \)
 3. if \(f(n) \) is \(\Omega(n^{k+\epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:
 \[T(n) = T(n/3) + n \log n \]
 Solution: \(\log_b a = 0 \), so case 3 says \(T(n) \) is \(O(n \log n) \).

Master Method, Example 4

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{k-\epsilon}) \), then \(T(n) \) is \(\Theta(n^k) \)
 2. if \(f(n) \) is \(\Theta(n^{k-\epsilon} \log^i n) \), then \(T(n) \) is \(\Theta(n^{k-\epsilon} \log^{i+1} n) \)
 3. if \(f(n) \) is \(\Omega(n^{k+\epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:
 \[T(n) = 8T(n/2) + n^2 \]
 Solution: \(\log_b a = 3 \), so case 1 says \(T(n) \) is \(O(n^3) \).

Master Method, Example 5

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{k-\epsilon}) \), then \(T(n) \) is \(\Theta(n^k) \)
 2. if \(f(n) \) is \(\Theta(n^{k-\epsilon} \log^i n) \), then \(T(n) \) is \(\Theta(n^{k-\epsilon} \log^{i+1} n) \)
 3. if \(f(n) \) is \(\Omega(n^{k+\epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:
 \[T(n) = 9T(n/3) + n^3 \]
 Solution: \(\log_b a = 2 \), so case 3 says \(T(n) \) is \(O(n^3) \).

Master Method, Example 6

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{k-\epsilon}) \), then \(T(n) \) is \(\Theta(n^k) \)
 2. if \(f(n) \) is \(\Theta(n^{k-\epsilon} \log^i n) \), then \(T(n) \) is \(\Theta(n^{k-\epsilon} \log^{i+1} n) \)
 3. if \(f(n) \) is \(\Omega(n^{k+\epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:
 \[T(n) = T(n/2) + 1 \] (binary search)
 Solution: \(\log_b a = 0 \), so case 2 says \(T(n) \) is \(O(\log n) \).

Master Method, Example 7

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{k-\epsilon}) \), then \(T(n) \) is \(\Theta(n^k) \)
 2. if \(f(n) \) is \(\Theta(n^{k-\epsilon} \log^i n) \), then \(T(n) \) is \(\Theta(n^{k-\epsilon} \log^{i+1} n) \)
 3. if \(f(n) \) is \(\Omega(n^{k+\epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:
 \[T(n) = 2T(n/2) + \log n \] (heap construction)
 Solution: \(\log_b a = 1 \), so case 1 says \(T(n) \) is \(O(n) \).

Iterative "Proof" of the Master Theorem

- Using iterative substitution, let us see if we can find a pattern:
 \[T(n) = aT(n/b) + f(n) = \]
 \[
 = a^2T(n/b^2) + af(n/b) + bn \\
 = a^3T(n/b^3) + a^2f(n/b^2) + af(n/b) + f(n) \\
 = \ldots \\
 = a^{n-1}T(1) + \sum_{i=0}^{n-1} a^if(n/b^i) \\
 = a^{n-1}T(1) + \sum_{i=0}^{n-1} a^if(n/b^i) \\
 \]

- We then distinguish the three cases as:
 - The first term is dominant
 - Each part of the summation is equally dominant
 - The summation is a geometric series

Divide-and-Conquer 13

Divide-and-Conquer 14

Divide-and-Conquer 15

Divide-and-Conquer 16

Divide-and-Conquer 17

Divide-and-Conquer 18
An Improved Integer Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.

1. Divide step: Split I and J into high-order and low-order bits
 \[I = I_h 2^{n/2} + I_l \]
 \[J = J_h 2^{n/2} + J_l \]
2. We can then define \(I \cdot J \) by multiplying the parts and adding:
 \[I \cdot J = (I_h 2^{n/2} + I_l) \cdot (J_h 2^{n/2} + J_l) \]
 \[= I_h J_h 2^{n} + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l \]
3. So, \(T(n) = 4T(n/2) + n \), which implies \(T(n) \) is \(O(n^2) \).
4. But that is no better than the algorithm we learned in grade school.

Therefore, we need an improved algorithm.

So, \(T(n) = 3T(n/2) + n \), which implies \(T(n) \) is \(O(n^{log_2 3}) \), by the Master Theorem.

Thus, \(T(n) \) is \(O(n^{1.585}) \).