Dictionary ADT

- The dictionary ADT models a searchable collection of key-element items.
- The main operations of a dictionary are searching, inserting, and deleting items.
- Multiple items with the same key are allowed.
- Applications:
 - address book
 - credit card authorization
 - mapping host names (e.g., cs16.net) to internet addresses (e.g., 128.148.34.101)

Dictionary ADT methods:
- findElement(k): if the dictionary has an item with key k, returns its element; else, returns the special element NO_SUCH_KEY.
- insertItem(k, o): inserts item (k, o) into the dictionary.
- removeElement(k): if the dictionary has an item with key k, removes it from the dictionary and returns its element; else, returns the special element NO_SUCH_KEY.
- size(), isEmpty()
- keys(), Elements()
Binary Search Tree

A binary search tree is a binary tree storing keys (or key-element pairs) at its internal nodes and satisfying the following property:

- Let \(u, v, \) and \(w \) be three nodes such that \(u \) is in the left subtree of \(v \) and \(w \) is in the right subtree of \(v \). We have \(\text{key}(u) \leq \text{key}(v) \leq \text{key}(w) \)
- External nodes do not store items

An inorder traversal of a binary search trees visits the keys in increasing order

Search

To search for a key \(k \), we trace a downward path starting at the root
- The next node visited depends on the outcome of the comparison of \(k \) with the key of the current node
- If we reach a leaf, the key is not found and we return \text{NO_SUCH_KEY}

Example: findElement(4)

Algorithm findElement(k, v)

\begin{align*}
\text{if } & T.\text{isExternal}(v) \\
\text{return } & \text{NO_SUCH_KEY} \\
\text{if } & k < \text{key}(v) \\
\text{return } & \text{findElement}(k, T.\text{leftChild}(v)) \\
\text{else if } & k = \text{key}(v) \\
\text{return } & \text{element}(v) \\
\text{else } & k > \text{key}(v) \\
\text{return } & \text{findElement}(k, T.\text{rightChild}(v))
\end{align*}

Insertion

To perform operation insertItem(k, o), we search for key \(k \)
- Assume \(k \) is not already in the tree, and let \(w \) be the leaf reached by the search
- We insert \(k \) at node \(w \) and expand \(w \) into an internal node
- Example: insert 5

Deletion

To perform operation removeElement(\(k \)), we search for key \(k \)
- Assume key \(k \) is in the tree, and let \(v \) be the node storing \(k \)
- If node \(v \) has a leaf child \(w \), we remove \(v \) and \(w \) from the tree with operation removeAboveExternal(\(w \))
- Example: remove 4

Deletion (cont.)

We consider the case where the key \(k \) to be removed is stored at a node \(v \) whose children are both internal
- we find the internal node \(w \) that follows \(v \) in an inorder traversal
- we copy \(\text{key}(w) \) into node \(v \)
- we remove node \(w \) and its left child \(z \) (which must be a leaf) by means of operation removeAboveExternal(\(v \))
- Example: remove 3

Performance

Consider a dictionary with \(n \) items implemented by means of a binary search tree of height \(h \)
- the space used is \(O(n) \)
- methods findElement, insertItem and removeElement take \(O(h) \) time
- The height \(h \) is \(O(n) \) in the worst case and \(O(\log n) \) in the best case