Outline and Reading

- **Definitions** (§6.1)
 - Subgraph
 - Connectivity
 - Spanning trees and forests
- **Depth-first search** (§6.3.1)
 - Algorithm
 - Example
 - Properties
 - Analysis
- **Applications of DFS** (§6.5)
 - Path finding
 - Cycle finding

Subgraphs

- A subgraph S of a graph G is a graph such that:
 - The vertices of S are a subset of the vertices of G.
 - The edges of S are a subset of the edges of G.
- A spanning subgraph of G is a subgraph that contains all the vertices of G.

Connectivity

- A graph is connected if there is a path between every pair of vertices.
- A connected component of a graph G is a maximal connected subgraph of G.

Trees and Forests

- A (free) tree is an undirected graph T such that:
 - T is connected.
 - T has no cycles.
 - This definition of tree is different from the one of a rooted tree.
- A forest is an undirected graph without cycles.
- The connected components of a forest are trees.

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree.
- A spanning tree is not unique unless the graph is a tree.
- Spanning trees have applications to the design of communication networks.
- A spanning forest of a graph is a spanning subgraph that is a forest.
Depth-First Search (DFS) is a general technique for traversing a graph. A DFS traversal of a graph \(G \) visits all the vertices and edges of \(G \), determines whether \(G \) is connected, computes the connected components of \(G \), and computes a spanning forest of \(G \).

The DFS algorithm uses a mechanism for setting and getting "labels" of vertices and edges.

Algorithm DFS

Input: graph \(G \) and a start vertex \(v \) of \(G \)
Output: labeling of the edges of \(G \) as discovery edges and back edges

for all \(u \in G.vertices() \)
 \(\text{setLabel}(u, \text{UNEXPLORED}) \)
for all \(e \in G.edges() \)
 \(\text{setLabel}(e, \text{UNEXPLORED}) \)
for all \(v \in G.vertices() \)
 if \(\text{getLabel}(v) = \text{UNEXPLORED} \)
 \(\text{DFS}(G, v) \)

Properties of DFS

1. DFS visits all the vertices and edges in the connected component of \(v \).
2. The discovery edges labeled by DFS form a spanning tree of the connected component of \(v \).
Analysis of DFS

- Setting/getting a vertex/edge label takes $O(1)$ time.
- Each vertex is labeled twice:
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice:
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method `incidentEdges` is called once for each vertex.
- DFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure.
 - Recall that $\sum_v \deg(v) = 2m$.

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern.
- We call `DFS(G, u)` with u as the start vertex.
- We use a stack S to keep track of the path between the start vertex and the current vertex.
- As soon as destination vertex z is encountered, we return the path as the contents of the stack.

```
Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v = z
return S.elements()
for all e ∈ G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w ← opposite(v, e)
setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop()
else
C ← new empty stack
repeat
o ← S.pop()
C.push(o)
until o = w
return C.elements()
```

Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern.
- We use a stack S to keep track of the path between the start vertex and the current vertex.
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w.

```
Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w ← opposite(e, v)
setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop()
else
C ← new empty stack
repeat
o ← S.pop()
C.push(o)
until o = w
return C.elements()
```

Depth-First Search