Breadth-First Search

Outline and Reading

- Breadth-first search (§6.3.3)
 - Algorithm
 - Example
 - Properties
 - Analysis
 - Applications
- DFS vs. BFS (§6.3.3)
 - Comparison of applications
 - Comparison of edge labels

Breadth-First Search

Breadth-first search (BFS) is a general technique for traversing a graph. A BFS traversal of a graph G visits all the vertices and edges of G, determines whether G is connected, computes the connected components of G, and computes a spanning forest of G. BFS on a graph with n vertices and m edges takes $O(n + m)$ time. BFS can be further extended to solve other graph problems, such as finding and reporting a path with the minimum number of edges between two given vertices, and finding a simple cycle, if there is one.

Algorithm

Algorithm BFS

- **Input**: graph G
- **Output**: labeling of the edges and partition of the vertices of G

1. $L_0 \leftarrow$ new empty sequence
2. L_0.insertLast(s)
3. setLabel(s, VISITED)
4. $i \leftarrow 0$
5. while L_i.isEmpty() do
 6. $L_{i+1} \leftarrow$ new empty sequence
 7. for all $v \in L_i$.elements() do
 8. for all $e \in G$.incidentEdges(v) do
 9. if getLabel(e) = UNEXPLORED
 10. $w \leftarrow$ opposite(v, e)
 11. if getLabel(w) = UNEXPLORED
 12. setLabel(e, DISCOVERY)
 13. setLabel(w, VISITED)
 14. L_{i+1}.insertLast(w)
 15. else
 16. setLabel(e, CROSS)
 17. $i \leftarrow i + 1$

Example

- unexplored vertex
- visited vertex
- unexplored edge
- discovery edge
- cross edge

Example (cont.)
Example (cont.)

Properties

Notation

G_s: connected component of s

Property 1

$BFS(G, s)$ visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by $BFS(G, s)$ form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \deg(v) = 2m$

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Biconnected components</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

DFS vs. BFS (cont.)

Back edge (v, w)

- w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

- w is in the same level as v or in the next level in the tree of discovery edges