Approximation Algorithms

Outline and Reading

- Approximation Algorithms for NP-Complete Problems (§13.4)
 - Approximation ratios
 - Polynomial-Time Approximation Schemes (§13.4.1)
 - 2-Approximation for Vertex Cover (§13.4.2)
 - 2-Approximation for TSP special case (§13.4.3)
 - Log n-Approximation for Set Cover (§13.4.4)

Approximation Ratios

- Optimization Problems
 - We have some problem instance x that has many feasible "solutions".
 - We are trying to minimize (or maximize) some cost function c(S) for a "solution" S to x. For example,
 - Finding a minimum spanning tree of a graph
 - Finding a smallest vertex cover of a graph
 - Finding a smallest traveling salesperson tour in a graph
- T is a k-approximation to the optimal solution OPT if c(T)/c(OPT) < k (assuming a min. prob.; a maximization approximation would be the reverse)

Polynomial-Time Approximation Schemes

- A problem L has a polynomial-time approximation scheme (PTAS) if it has a polynomial-time (1+ε)-approximation algorithm, for any fixed ε > 0 (this value can appear in the running time).
- 0/1 Knapsack has a PTAS, with a running time that is O(n^3/ε). Please see §13.4.1 in Goodrich-Tamassia for details.

Vertex Cover

- A vertex cover of graph G=(V,E) is a subset W of V, such that, for every (a,b) in E, a is in W or b is in W.
- OPT-VERTEX-COVER: Given a graph G, find a vertex cover of G with smallest size.
- OPT-VERTEX-COVER is NP-hard.

A 2-Approximation for Vertex Cover

- Every chosen edge e has both ends in C
- But e must be covered by an optimal cover; hence, one end of e must be in OPT
- Thus, there is at most twice as many vertices in C as in OPT.
- That is, C is a 2-approx. of OPT
- Running time: O(m)

Algorithm VertexCoverApprox(G)

- Input: graph G
- Output: a vertex cover C for G
- C ← empty set
- H ← G

while H has edges
 e ← H.removeEdge(H.removeEdge())
 v ← H.origin(e)
 w ← H.destination(e)
 C.add(v)
 C.add(w)
 for each f incident to v or w
 H.removeEdge(f)
return C
Special Case of the Traveling Salesperson Problem

- **OPT-TSP**: Given a complete, weighted graph, find a cycle of minimum cost that visits each vertex.
 - OPT-TSP is NP-hard
 - Special case: edge weights satisfy the triangle inequality (which is common in many applications):
 - \(w(a,b) + w(b,c) \geq w(a,c) \)

A 2-Approximation for TSP

Special Case

- Euler tour of MST \(M \)
- Output tour \(T \)
- OPT: Given a complete, weighted graph, find a cycle of minimum cost that visits each vertex.
- OPT-TSP is NP-hard
- Special case: edge weights satisfy the triangle inequality (which is common in many applications):
 - \(w(a,b) + w(b,c) \geq w(a,c) \)

A 2-Approximation for TSP - Proof

- The optimal tour is a spanning tour; hence \(|M| \leq |OPT| \).
- The Euler tour \(P \) visits each edge of \(M \) twice; hence \(|P| = 2|M| \).
- Each time we shortcut a vertex in the Euler Tour we will not increase the total length, by the triangle inequality (\(w(a,b) + w(b,c) \geq w(a,c) \)); hence, \(|T| \leq |P| \).
- Therefore, \(|T| \leq |P| = 2|M| \leq 2|OPT| \).

Set Cover

- **OPT-SET-COVER**: Given a collection of \(m \) sets, find the smallest number of them whose union is the same as the whole collection of \(m \) sets?
 - OPT-SET-COVER is NP-hard
 - Greedy approach produces an \(O(\log n) \)-approximation algorithm. See §13.4.4 for details.