AVL Trees

AVL Tree Definition

- **AVL trees are balanced.**
- An AVL Tree is a **binary search tree** such that for every internal node \(v \) of \(T \), the **heights of the children of \(v \) can differ by at most 1.**

An example of an AVL tree where the heights are shown next to the nodes:

Height of an AVL Tree

- **Fact:** The **height** of an AVL tree storing \(n \) keys is \(O(\log n) \).
- **Proof:** Let us bound \(n(h) \): the minimum number of internal nodes of an AVL tree of height \(h \).
 - We easily see that \(n(1) = 1 \) and \(n(2) = 2 \)
 - For \(n > 2 \), an AVL tree of height \(h \) contains the root node, one AVL subtree of height \(n-1 \) and another of height \(n-2 \).
 - That is, \(n(h) = 1 + n(h-1) + n(h-2) \)
 - Knowing \(n(h-1) > n(h-2) \), we get \(n(h) > 2n(h-2) \).
 - \(n(h) > 2n(h-2) \)
 - \(n(h) > 4n(h-4) \)
 - \(n(h) > 8n(h-6) \)
 - (by induction), \(n(h) > 2^i n(h-2i) \)
 - Solving the base case we get: \(n(h) > 2^{\lfloor h/2 \rfloor} \)
 - Taking logarithms: \(h < 2\log n(h) + 2 \)
 - Thus the height of an AVL tree is \(O(\log n) \)

Insertion in an AVL Tree

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example:

Trinode Restructuring

- let \((a,b,c) \) be an inorder listing of \(x, y, z \)
- perform the rotations needed to make \(b \) the topmost node of the three

Insertion Example, continued
Restructuring (as Single Rotations)

- Single Rotations:

 a = z
 b = x
 c = y

 T₀
 T₁
 T₂
 T₃

 Single rotation

Restructuring (as Double Rotations)

- Double rotations:

 a = z
 b = x
 c = y

 T₀
 T₁
 T₂
 T₃

 Double rotation

Removal in an AVL Tree

- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.
- Example:

 before deletion of 32
 after deletion

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.
- We perform restructure(x) to restore balance at z.
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.

Running Times for AVL Trees

- a single restructure is O(1)
- using a linked-structure binary tree
- find is O(log n)
 - height of tree is O(log n), no restructures needed
- insert is O(log n)
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)
- remove is O(log n)
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)